Mechanisms of water flooding characteristic curve upwarping at high water-cut stage and influencing factors

水驱 含水率 阶段(地层学) 环境科学 洪水(心理学) 含水饱和度 注水(采油) 土壤科学 石油工程 机械 水文学(农业) 地质学 多孔性 岩土工程 物理 心理学 古生物学 心理治疗师
作者
Jun Yao,Lei Zhang,Hai Sun,Tao Huang,Yongfei Yang,Guangpu Zhu,Yaohao Guo
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:64 (26): 2751-2760 被引量:7
标识
DOI:10.1360/tb-2019-0132
摘要

Water flooding is widely used in oilfield development as a secondary recovery method owning to its effectiveness and economic feasibility. When the injected water breaks through the production well, water is produced with oil. The water flooding characteristic curve is an important method for predicting recoverable reserves, recovery rates, and oilfield development dynamics. It reflects the oil-water composition of oilfield-produced fluids. The linear relationship between the relative permeability ratio ( K ro/ K rw) and water saturation ( S w) in semi-log coordinates is a theoretical basis for the water flooding characteristic curve. However, many mine practices and core experiments show that the relationship deviates from a straight line at a high water-cut stage, and the water flooding characteristic curve shows an upward trend. The upwarping phenomenon of the water flooding characteristic curve is related to the flow state of the oil/water phase. The continuum description, Darcy’s law, fails to predict and describe the transport of scattered residual oil in pore spaces. Many previous studies tried to obtain a non-linear relationship between ln( K ro/ K rw) and S w at the high water-cut stage by different methods, including fitting the experimental data. Though there are many studies on the upwarping phenomenon of water flooding characteristic curve, few studies focus on the mechanisms of this phenomenon. In addition, the effects of important development parameters, such as wettability and water-oil viscosity ratio, on the upwarping phenomenon are unclear. In this study, the Navier-Stokes equation is coupled with the phase field method to describe the water flooding processes in porous media and to track the two phase interface. The effects of wall wettability and oil-water viscosity ratio on the flow patterns were analyzed by numerical simulations. In addition, the critical water cut when the relationship between ln( K ro/ K rw) and S w deviates from the straight line was investigated. The results show that residual oil is mainly scattered at the high water-cut stage, and the flow capacity of oil rapidly decreases, which leads to the upwarping phenomenon of the water flooding characteristic curve. The critical water cut is different under different wetting conditions. Due to the effect of capillary force, the flow capacity of oil is stronger, and more oil can be displaced out through the imbibition process at the high water-cut stage in water-wet porous media, and the critical water cut increases when wettability changes from oil-wet to water-wet. The flow patterns of oil and water are different at different oil-water viscosity ratios. At the low viscosity ratio, the displacement front is more uniform, and the removal of oil by water mainly depends on expanding the sweeping area at the high water-cut stage. For the high viscosity ratio case, clear fingers of injected water can be observed during the flooding process, and it is difficult for the injected water to enter the areas which were not previously swept at the high water-cut stage. The viscous fingering phenomenon enhances the ineffective displacement of the injected water. The relationship between ln( K ro/ K rw) and S w deviates from a straight line at a lower water cut when the oil-water viscosity ration is high.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壹吾鱼完成签到,获得积分10
刚刚
1秒前
152van发布了新的文献求助10
1秒前
小衫生完成签到,获得积分20
1秒前
ZhangHaoYuan完成签到,获得积分10
2秒前
隐形曼青应助yu采纳,获得10
3秒前
3秒前
4秒前
5秒前
科研通AI6应助xmingpsy采纳,获得10
5秒前
5秒前
5秒前
华仔应助李楼村采纳,获得10
6秒前
科研通AI6应助xiaofeifantasy采纳,获得10
6秒前
7秒前
7秒前
tongguang发布了新的文献求助10
7秒前
咖啡豆发布了新的文献求助200
8秒前
我是老大应助faye采纳,获得10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
SciGPT应助152van采纳,获得10
9秒前
鲤鱼酸奶发布了新的文献求助20
10秒前
10秒前
科研通AI6应助杨紫宸采纳,获得10
10秒前
高兴断秋发布了新的文献求助10
11秒前
静待花开发布了新的文献求助10
11秒前
12秒前
一条纤维化的鱼完成签到,获得积分10
12秒前
文静的跳跳糖完成签到,获得积分10
12秒前
12秒前
12秒前
机智冬灵完成签到,获得积分10
13秒前
朱妙彤发布了新的文献求助10
13秒前
韩野发布了新的文献求助10
13秒前
14秒前
超级李包包完成签到,获得积分10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906