Dual-branch residual network for lung nodule segmentation

人工智能 计算机科学 体素 分割 模式识别(心理学) 残余物 联营 块(置换群论) 相似性(几何) 卷积神经网络 结核(地质) Sørensen–骰子系数 图像分割 计算机视觉 数学 图像(数学) 算法 生物 几何学 古生物学
作者
Haichao Cao,Feng Yu,Haichao Cao,Chih‐Cheng Hung,Guangzhi Ma,Xiangyang Xu,Renchao Jin,Jianguo Lü
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:86: 105934-105934 被引量:102
标识
DOI:10.1016/j.asoc.2019.105934
摘要

An accurate segmentation of lung nodules in computed tomography (CT) images is critical to lung cancer analysis and diagnosis. However, due to the variety of lung nodules and the similarity of visual characteristics between nodules and their surroundings, a robust segmentation of nodules becomes a challenging problem. In this study, we propose the Dual-branch Residual Network (DB-ResNet) which is a data-driven model. Our approach integrates two new schemes to improve the generalization capability of the model: (1) the proposed model can simultaneously capture multi-view and multi-scale features of different nodules in CT images; (2) we combine the features of the intensity and the convolutional neural networks (CNN). We propose a pooling method, called the central intensity-pooling layer (CIP), to extract the intensity features of the center voxel of the block, and then use the CNN to obtain the convolutional features of the center voxel of the block. In addition, we designed a weighted sampling strategy based on the boundary of nodules for the selection of those voxels using the weighting score, to increase the accuracy of the model. The proposed method has been extensively evaluated on the LIDC-IDRI dataset containing 986 nodules. Experimental results show that the DB-ResNet achieves superior segmentation performance with the dice similarity coefficient (DSC) of 82.74% on the dataset. Moreover, we compared our results with those of four radiologists on the same dataset. The comparison showed that our DSC was 0.49% higher than that of human experts. This proves that our proposed method is as good as the experienced radiologist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕青应助叙温雨采纳,获得10
刚刚
跳跃仙人掌应助雪山飞龙采纳,获得10
1秒前
科研通AI2S应助太阳cy采纳,获得10
1秒前
朝阳应助俊哥采纳,获得10
3秒前
4秒前
天行健发布了新的文献求助10
4秒前
7秒前
10秒前
闵芷蕊完成签到,获得积分10
10秒前
欣喜易蓉完成签到 ,获得积分10
12秒前
孝顺的乐枫完成签到,获得积分20
15秒前
无聊的翠芙完成签到,获得积分10
15秒前
糊涂的元容完成签到,获得积分10
15秒前
15秒前
温暖寻雪发布了新的文献求助10
16秒前
17秒前
赵倩完成签到,获得积分10
18秒前
20秒前
20秒前
温暖寻雪完成签到,获得积分10
21秒前
乔威完成签到,获得积分10
24秒前
Zzzhu发布了新的文献求助20
25秒前
天天开心完成签到,获得积分10
27秒前
28秒前
Erin完成签到,获得积分10
29秒前
王77完成签到,获得积分10
30秒前
31秒前
32秒前
33秒前
33秒前
LYN-66发布了新的文献求助10
37秒前
含蓄的鹤发布了新的文献求助10
38秒前
40秒前
40秒前
睡不醒就来上班完成签到,获得积分10
41秒前
42秒前
45秒前
45秒前
薄荷糖发布了新的文献求助10
46秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149259
求助须知:如何正确求助?哪些是违规求助? 2800349
关于积分的说明 7839651
捐赠科研通 2457913
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706