亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dimensionality reduction for large-scale neural recordings

降维 人口 系统神经科学 维数之咒 计算机科学 人工智能 神经科学 机器学习 心理学 髓鞘 人口学 社会学 少突胶质细胞 中枢神经系统
作者
John P. Cunningham,Byron M. Yu
出处
期刊:Nature Neuroscience [Springer Nature]
卷期号:17 (11): 1500-1509 被引量:1076
标识
DOI:10.1038/nn.3776
摘要

Many recent studies have adopted dimensionality reduction to analyze neural population activity and to find features that are not apparent at the level of individual neurons. The authors describe the scientific motivation for population analyses and the dimensionality reduction methods commonly applied to population activity. They also offer practical advice about selecting methods and interpreting their outputs. Most sensory, cognitive and motor functions depend on the interactions of many neurons. In recent years, there has been rapid development and increasing use of technologies for recording from large numbers of neurons, either sequentially or simultaneously. A key question is what scientific insight can be gained by studying a population of recorded neurons beyond studying each neuron individually. Here, we examine three important motivations for population studies: single-trial hypotheses requiring statistical power, hypotheses of population response structure and exploratory analyses of large data sets. Many recent studies have adopted dimensionality reduction to analyze these populations and to find features that are not apparent at the level of individual neurons. We describe the dimensionality reduction methods commonly applied to population activity and offer practical advice about selecting methods and interpreting their outputs. This review is intended for experimental and computational researchers who seek to understand the role dimensionality reduction has had and can have in systems neuroscience, and who seek to apply these methods to their own data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助lou1219采纳,获得30
2秒前
6秒前
14秒前
辛勤的剑成完成签到 ,获得积分10
15秒前
guyutian应助Sym采纳,获得10
18秒前
24秒前
550482956谢发布了新的文献求助10
29秒前
29秒前
科研通AI2S应助自信的坤采纳,获得10
32秒前
大模型应助550482956谢采纳,获得10
37秒前
坦率尔蝶完成签到 ,获得积分10
43秒前
44秒前
44秒前
碧蓝香芦完成签到 ,获得积分10
45秒前
英俊的铭应助550482956谢采纳,获得10
48秒前
asd1576562308完成签到 ,获得积分10
56秒前
杳鸢应助bji采纳,获得10
57秒前
59秒前
1分钟前
psypsy应助阳光以筠采纳,获得50
1分钟前
醉熏的幼珊完成签到,获得积分10
1分钟前
科研通AI2S应助兰贵人采纳,获得10
1分钟前
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
Darcy应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
tuanheqi应助科研通管家采纳,获得20
1分钟前
1分钟前
sunny完成签到 ,获得积分10
1分钟前
chen完成签到,获得积分10
1分钟前
稻草人完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
bji完成签到,获得积分10
2分钟前
2分钟前
行路难完成签到 ,获得积分10
2分钟前
Yanz完成签到,获得积分10
2分钟前
2分钟前
大个应助仁爱的凡波采纳,获得10
3分钟前
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229674
求助须知:如何正确求助?哪些是违规求助? 2877215
关于积分的说明 8198517
捐赠科研通 2544692
什么是DOI,文献DOI怎么找? 1374549
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774