Electron beam tuning of carrier concentrations in oxide nanowires

纳米线 材料科学 离子键合 氧化物 化学物理 辐照 载流子 电子束处理 钝化 纳米技术 光电子学 离子 化学 图层(电子) 物理 有机化学 核物理学 冶金
作者
Hyunjin Ji,Jaewan Choi,Youngseung Cho,In-Sung Hwang,Sun Jung Kim,Jong‐Heun Lee,Siegmar Roth,Gyu‐Tae Kim
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:110 (1) 被引量:3
标识
DOI:10.1063/1.3596579
摘要

In spite of the attractive electrical properties of metal oxide nanowires, it is difficult to tune their surface states, notably the ionic adsorbents and oxygen vacancies, both of which can cause instability, degradation, and the irreproducibility or unrepeatable changes of the electrical characteristics. In order to control the surface states of the nanowires, electron beams were locally irradiated onto the channels of metal oxide nanowire field effect transistors. This high energy electron beam irradiation changed the electrical properties of the individual metal oxide nanowires, due to the removal of the negative adsorbents (O2-, O-). The detachment of the ionic adsorbents changes the charge states of the nanowires, resulting in the enhancement of the electrical conductance in n-type nanowires (ZnO, SnO2) and the degradation of the conductance in p-type nanowires (CuO). By investigating the changes in the electrical properties of nanowire devices in air or vacuum, with or without exposure to electron beams, the roles of the physisorbed water molecules or chemisorbed oxygen molecules can be independently understood. Unlike the electron beam irradiation, the vacuum enhanced the conductance of both n-type (ZnO, SnO2) and p-type (CuO) nanowires, due to the release of charges caused by the detachment of the polarized water molecules that were screening them from the surface of the nanowires, irrespective of the major carrier type. The electron beam irradiation technique has the potential to locally modulate the charge carriers in electronic nanowire devices, and the changes could be maintained with proper passivation for the long-term preservation of the device characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经发布了新的文献求助10
1秒前
科研通AI6应助孙孙孙采纳,获得30
1秒前
3秒前
大力发布了新的文献求助10
4秒前
在水一方应助1111采纳,获得10
4秒前
yy完成签到,获得积分10
4秒前
4秒前
666发布了新的文献求助10
5秒前
乐轩发布了新的文献求助10
6秒前
zz_1997完成签到 ,获得积分10
6秒前
李健应助wenxianxiazai123采纳,获得10
7秒前
一只猪发布了新的文献求助10
8秒前
秀丽的犀牛完成签到,获得积分10
8秒前
桃博完成签到,获得积分10
9秒前
严三笑发布了新的文献求助10
10秒前
10秒前
完美世界应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得30
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
虚幻访冬应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
xxfsx应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
孙孙应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
14秒前
ding应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543