Electron beam tuning of carrier concentrations in oxide nanowires

纳米线 材料科学 离子键合 氧化物 化学物理 辐照 载流子 电子束处理 钝化 纳米技术 光电子学 离子 化学 图层(电子) 物理 有机化学 核物理学 冶金
作者
Hyunjin Ji,Jaewan Choi,Youngseung Cho,In-Sung Hwang,Sun Jung Kim,Jong‐Heun Lee,Siegmar Roth,Gyu‐Tae Kim
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:110 (1) 被引量:3
标识
DOI:10.1063/1.3596579
摘要

In spite of the attractive electrical properties of metal oxide nanowires, it is difficult to tune their surface states, notably the ionic adsorbents and oxygen vacancies, both of which can cause instability, degradation, and the irreproducibility or unrepeatable changes of the electrical characteristics. In order to control the surface states of the nanowires, electron beams were locally irradiated onto the channels of metal oxide nanowire field effect transistors. This high energy electron beam irradiation changed the electrical properties of the individual metal oxide nanowires, due to the removal of the negative adsorbents (O2-, O-). The detachment of the ionic adsorbents changes the charge states of the nanowires, resulting in the enhancement of the electrical conductance in n-type nanowires (ZnO, SnO2) and the degradation of the conductance in p-type nanowires (CuO). By investigating the changes in the electrical properties of nanowire devices in air or vacuum, with or without exposure to electron beams, the roles of the physisorbed water molecules or chemisorbed oxygen molecules can be independently understood. Unlike the electron beam irradiation, the vacuum enhanced the conductance of both n-type (ZnO, SnO2) and p-type (CuO) nanowires, due to the release of charges caused by the detachment of the polarized water molecules that were screening them from the surface of the nanowires, irrespective of the major carrier type. The electron beam irradiation technique has the potential to locally modulate the charge carriers in electronic nanowire devices, and the changes could be maintained with proper passivation for the long-term preservation of the device characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊酒应助莫言荨采纳,获得10
1秒前
无花果应助cc采纳,获得10
1秒前
1秒前
老Mark完成签到,获得积分10
2秒前
2秒前
善学以致用应助HYHY采纳,获得10
2秒前
泪雨煊发布了新的文献求助10
2秒前
害羞聋五发布了新的文献求助30
3秒前
所所应助格格萧采纳,获得10
4秒前
三块石头发布了新的文献求助10
4秒前
天天快乐应助cheryl采纳,获得100
4秒前
超帅亦寒发布了新的文献求助10
4秒前
xyzdmmm发布了新的文献求助30
4秒前
大个应助Aura采纳,获得30
4秒前
4秒前
科研通AI5应助你终硕采纳,获得10
4秒前
B7来咯发布了新的文献求助10
5秒前
5秒前
Jasper应助guojingjing采纳,获得10
5秒前
Jim发布了新的文献求助10
7秒前
李家人应助whl采纳,获得10
7秒前
芋圆不爱吃芋圆完成签到,获得积分10
7秒前
7秒前
qicaideahau发布了新的文献求助30
8秒前
8秒前
念与惜发布了新的文献求助20
8秒前
8秒前
泪雨煊完成签到,获得积分20
9秒前
9秒前
舒适新蕾发布了新的文献求助10
9秒前
9秒前
三块石头完成签到,获得积分10
9秒前
10秒前
韩帅发布了新的文献求助10
10秒前
复原乳完成签到,获得积分10
11秒前
XIAOMU完成签到 ,获得积分10
11秒前
11秒前
林先生发布了新的文献求助20
11秒前
11秒前
Zert发布了新的文献求助10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474135
求助须知:如何正确求助?哪些是违规求助? 3066512
关于积分的说明 9099287
捐赠科研通 2757760
什么是DOI,文献DOI怎么找? 1513110
邀请新用户注册赠送积分活动 699386
科研通“疑难数据库(出版商)”最低求助积分说明 698921