衍生化
化学
维生素D与神经学
色谱法
钙二醇
液相色谱-质谱法
维生素D结合蛋白
质谱法
维生素
维生素D缺乏
内科学
生物化学
医学
作者
Martin Kaufmann,John C. Gallagher,Munro Peacock,Karl‐Peter Schlingmann,Martin Konrad,Hector F. DeLuca,Rita Sigüeiro,Borja Lopez,Antonio Mouriño,M.A. Maestro,René St‐Arnaud,Joel S. Finkelstein,Donald P. Cooper,Glenville Jones
摘要
The discovery of hypercalcemic diseases due to loss-of-function mutations in 25-hydroxyvitamin D-24-hydroxylase has placed a new demand for sensitive and precise assays for 24,25-dihydroxyvitamin D [24,25-(OH)2D].We describe a novel liquid chromatography and tandem mass spectrometry-based method involving derivatization with DMEQ-TAD {4-[2-(6,7-dimethoxy-4-methyl-3,4-dihydroquinoxalinyl)ethyl]-1,2,4-triazoline-3,5-dione} to simultaneously assay multiple vitamin D metabolites including 25-hydroxyvitamin D (25-OH-D) and 24,25-(OH)2D using 100 μL of serum with a 5-minute run time.The assay uses a newly synthesized internal standard d6-24,25-(OH)2D3 enabling the quantitation of 24,25-(OH)2D3 as well as the determination of the ratio of 25-OH-D3 to 24,25-(OH)2D3, a physiologically useful parameter.We report data on more than 1000 normal and disease samples involving vitamin D deficiency or hypercalcemia in addition to studies involving knockout mouse models.The assay showed good correlation with samples from quality assurance schemes for 25-OH-D (25-OH-D2 and 25-OH-D3) determination (-2% to -5% bias) and exhibited low inter- and intraassay coefficients of variation (4%-7%) and lower limits of quantitation of 0.25-0.45 nmol/L. In clinical studies, we found a strong correlation between serum levels of 25-OH-D3 and 24,25-(OH)2D3 (r(2) = 0.80) in subjects over a broad range of 25-OH-D3 values and a marked lack of production of 24,25-(OH)2D3 below 25 nmol/L of 25-OH-D. The ratio of 25-OH-D3 to 24,25-(OH)2D3, which remained less than 25 in vitamin D-sufficient subjects (serum 25-OH-D < 50 nmol/L) but was greatly elevated (80-100) in patients with idiopathic infantile hypercalcemia.The new method showed good utility in clinical settings involving vitamin D deficiency; supplementation with vitamin D and idiopathic infantile hypercalcemia, as well as in animal models with ablation of selected cytochrome P450-containing enzymes involved in vitamin D metabolism.
科研通智能强力驱动
Strongly Powered by AbleSci AI