链霉素
铜绿微囊藻
普通小球藻
生物
光合作用
抗氧化剂
食品科学
叶绿素
藻类
微生物学
蓝藻
植物
生物化学
细菌
抗生素
遗传学
作者
Haifeng Qian,Jingjing Li,Xiangjie Pan,Zhengqi Sun,Chengbin Ye,Gongqin Jin,Zhengwei Fu
摘要
Abstract Streptomycin is a common contaminant in a variety of industrial and agricultural wastewaters. The available information on the potential toxicity of streptomycin of fresh algae implicated in the treatment of biological wastewater is extremely limited. The objective of this study was to evaluate the effects of streptomycin on physiological indices and photosynthesis‐related gene transcription. The results of short‐term batch bioassays indicated that streptomycin was more sensitive to cyanobacteria than to green algae. The EC50 of streptomycin in Microcystis aeruginosa and Chlorella vulgaris were 0.28 and 20.08 mg L −1 , respectively. These selected streptomycin concentrations inhibited algal cell growth and decreased chlorophyll or phycocyanobilin content. Streptomycin also destroyed the overall membrane system, which was speculated from malondialdehyde (MDA) content and electrolyte leakage increasing after streptomycin exposure. Two algae were induced to increase their antioxidant enzyme activities to withstand streptomycin. However, the balance between oxidant substance and antioxidant enzyme was broken, because reactive oxygen species (ROS) content simultaneously increased. Streptomycin inhibited photosynthesis‐related gene transcription in C. vulgaris and M. aeruginosa . Transcript levels of psa B , psb A, and rbc L in C. vulgaris decreased to only 14.5%, 32.2%, and 9.3% of the control, respectively. Similarly, the transcript levels of psa B , psb D, and rbc L in M. aeruginosa decreased markedly in the present of streptomycin. The transcription of these genes was 12.4%, 26.1%, and 28.4% of the control after 0.1 mg L −1 streptomycin exposure, respectively. Our results demonstrate that streptomycin is toxic to fresh algae, affects photosynthesis‐related gene transcription, and blocks electron transport and ROS overproduction. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.
科研通智能强力驱动
Strongly Powered by AbleSci AI