大都会-黑斯廷斯算法
吉布斯抽样
算法
马尔可夫链
马尔科夫蒙特卡洛
阐述(叙述)
采样(信号处理)
计算机科学
简单(哲学)
拒收取样
数学
贝叶斯概率
人工智能
机器学习
混合蒙特卡罗
艺术
哲学
文学类
认识论
滤波器(信号处理)
计算机视觉
作者
Siddhartha Chib,Edward Greenberg
标识
DOI:10.1080/00031305.1995.10476177
摘要
Abstract We provide a detailed, introductory exposition of the Metropolis-Hastings algorithm, a powerful Markov chain method to simulate multivariate distributions. A simple, intuitive derivation of this method is given along with guidance on implementation. Also discussed are two applications of the algorithm, one for implementing acceptance-rejection sampling when a blanketing function is not available and the other for implementing the algorithm with block-at-a-time scans. In the latter situation, many different algorithms, including the Gibbs sampler, are shown to be special cases of the Metropolis-Hastings algorithm. The methods are illustrated with examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI