Remote sensing retrieval of soil moisture using ENVISAT-ASAR images: A case study in suburban region of Peking, China

遥感 含水量 环境科学 微波食品加热 归一化差异植被指数 表面粗糙度 水分 微波成像 气象学 计算机科学 气候变化 地质学 地理 材料科学 电信 海洋学 岩土工程 复合材料
作者
Xuhua Cai,Huili Gong,Xiaojuan Li,Lin Zhu
标识
DOI:10.1109/geoinformatics.2010.5567495
摘要

Soil moisture is a highly variable component of soil, and plays an important role in materials and energy exchanges between earth and atmosphere. It is also the basic parameter of crop growing and crop yield forecast. With the features of observing large area synchronously, timely, and economically, remote sensing technique makes dynamic soil moisture monitoring possible. Soil moisture remote sensing monitoring has 30 years history and many researches have been done home and abroad in this field, including visible and infrared remote sensing based NDVI methods, hyper spectral remote sensing based algorithm, and microwave remote sensing orientated methodology and so on. Among these methods, microwave has great advantage in retrieval soil moisture because of the characteristics of all-weather, penetrability and not affected by the cloud. Through study people found that microwave is one of the most effective methods in retrieval soil moisture in various technologies. This paper summarizes the major microwave sensors and the principle of microwave remote sensing, and introduces the microwave model and soil moisture algorithm. Based on ENVISAT Radar data, with suburban farmland (wheat and corn as the main crop) of Peking as the study area, we established the microwave scattering characteristics database of local exposed surface. We used the selected model to simulate the response characteristics of backscattering coefficient influenced by a variety of parameters, such as soil moisture, surface roughness, incidence angle, polarization, etc. Then we got the updated inversion empirical model of the exposed surface, and evaluated the accuracy of model with the actually surveyed data in the field. This article makes certain contributions to the active microwave soil moisture retrieval methods study, and provide a viable model for water resources decision-making support to the Peking municipal government.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
刚刚
直率荠发布了新的文献求助10
刚刚
勾勾发布了新的文献求助10
1秒前
彭于晏应助白白kyt采纳,获得10
1秒前
Moriarty完成签到,获得积分10
2秒前
Promise发布了新的文献求助10
2秒前
3秒前
yijian完成签到,获得积分10
4秒前
丘比特应助iuim采纳,获得10
4秒前
4秒前
劲秉应助王发财采纳,获得30
7秒前
酷炫的菠萝完成签到 ,获得积分10
8秒前
luc完成签到,获得积分10
8秒前
9秒前
MR_Z发布了新的文献求助10
9秒前
来年发布了新的文献求助10
9秒前
小孟吖发布了新的文献求助10
11秒前
爱笑的猪猪关注了科研通微信公众号
11秒前
11秒前
NexusExplorer应助jiangfei采纳,获得10
11秒前
mo完成签到,获得积分10
11秒前
12秒前
lalala发布了新的文献求助10
14秒前
CodeCraft应助单纯的巧荷采纳,获得10
15秒前
林一完成签到,获得积分10
16秒前
充电宝应助醒醒采纳,获得50
17秒前
勾勾完成签到,获得积分10
17秒前
芋头发布了新的文献求助10
19秒前
小玲仔发布了新的文献求助10
19秒前
oleskarabach完成签到,获得积分20
19秒前
joy完成签到,获得积分10
19秒前
石头完成签到,获得积分20
22秒前
VDC应助Yolo采纳,获得20
22秒前
晚灯完成签到,获得积分10
22秒前
qin希望应助能不能下载啊采纳,获得10
22秒前
22秒前
22秒前
NZH发布了新的文献求助10
22秒前
飞飞deii应助哈哈哈采纳,获得10
25秒前
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
美国体育史 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259595
求助须知:如何正确求助?哪些是违规求助? 2901170
关于积分的说明 8314280
捐赠科研通 2570622
什么是DOI,文献DOI怎么找? 1396595
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631656