Remote sensing retrieval of soil moisture using ENVISAT-ASAR images: A case study in suburban region of Peking, China

遥感 含水量 环境科学 微波食品加热 归一化差异植被指数 表面粗糙度 水分 微波成像 气象学 计算机科学 气候变化 地质学 地理 材料科学 电信 海洋学 岩土工程 复合材料
作者
Xuhua Cai,Huili Gong,Xiaojuan Li,Lin Zhu
标识
DOI:10.1109/geoinformatics.2010.5567495
摘要

Soil moisture is a highly variable component of soil, and plays an important role in materials and energy exchanges between earth and atmosphere. It is also the basic parameter of crop growing and crop yield forecast. With the features of observing large area synchronously, timely, and economically, remote sensing technique makes dynamic soil moisture monitoring possible. Soil moisture remote sensing monitoring has 30 years history and many researches have been done home and abroad in this field, including visible and infrared remote sensing based NDVI methods, hyper spectral remote sensing based algorithm, and microwave remote sensing orientated methodology and so on. Among these methods, microwave has great advantage in retrieval soil moisture because of the characteristics of all-weather, penetrability and not affected by the cloud. Through study people found that microwave is one of the most effective methods in retrieval soil moisture in various technologies. This paper summarizes the major microwave sensors and the principle of microwave remote sensing, and introduces the microwave model and soil moisture algorithm. Based on ENVISAT Radar data, with suburban farmland (wheat and corn as the main crop) of Peking as the study area, we established the microwave scattering characteristics database of local exposed surface. We used the selected model to simulate the response characteristics of backscattering coefficient influenced by a variety of parameters, such as soil moisture, surface roughness, incidence angle, polarization, etc. Then we got the updated inversion empirical model of the exposed surface, and evaluated the accuracy of model with the actually surveyed data in the field. This article makes certain contributions to the active microwave soil moisture retrieval methods study, and provide a viable model for water resources decision-making support to the Peking municipal government.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Magical采纳,获得10
刚刚
GJ发布了新的文献求助10
刚刚
刚刚
科研通AI6应助好名字采纳,获得10
1秒前
科研通AI6应助动听书文采纳,获得10
1秒前
lucky发布了新的文献求助10
2秒前
离子键发布了新的文献求助10
2秒前
liz发布了新的文献求助10
2秒前
strongfrog发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
灰灰成长中完成签到,获得积分10
3秒前
3秒前
今后应助温柔樱桃采纳,获得10
4秒前
高媛完成签到,获得积分20
5秒前
yuko完成签到 ,获得积分10
5秒前
5秒前
6秒前
俊逸若之完成签到,获得积分10
6秒前
Jasper应助xryhhh采纳,获得10
6秒前
烟花应助轻歌水越采纳,获得10
7秒前
7秒前
7秒前
DY发布了新的文献求助10
8秒前
张瑜发布了新的文献求助10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
嘿嘿嘿发布了新的文献求助10
9秒前
细腻亦巧完成签到,获得积分10
9秒前
wang完成签到,获得积分10
9秒前
星河梦枕完成签到,获得积分10
10秒前
sober关注了科研通微信公众号
10秒前
10秒前
GoGoGo完成签到,获得积分10
10秒前
高媛发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836