神经保护
体温过低
窒息
医学
围产期窒息
麻醉
敌手
谷氨酸受体
药理学
内科学
受体
作者
Daqing Ma,Mahmuda Hossain,Andre Chow,Mubarik Arshad,Renee M. Battson,Robert D. Sanders,Huseyin Mehmet,A. David Edwards,Nicholas P. Franks,Mervyn Maze
摘要
Abstract Perinatal asphyxia can result in neuronal injury with long‐term neurological and behavioral consequences. Although hypothermia may provide some modest benefit, the intervention itself can produce adverse consequences. We have investigated whether xenon, an antagonist of the N ‐methyl‐ D ‐aspartate subtype of the glutamate receptor, can enhance the neuroprotection provided by mild hypothermia. Cultured neurons injured by oxygen‐glucose deprivation were protected by combinations of interventions of xenon and hypothermia that, when administered alone, were not efficacious. A combination of xenon and hypothermia administered 4 hours after hypoxic‐ischemic injury in neonatal rats provided synergistic neuroprotection assessed by morphological criteria, by hemispheric weight, and by functional neurological studies up to 30 days after the injury. The protective mechanism of the combination, in both in vitro and in vivo models, involved an antiapoptotic action. If applied to humans, these data suggest that low (subanesthetic) concentrations of xenon in combination with mild hypothermia may provide a safe and effective therapy for perinatal asphyxia. Ann Neurol 2005;58:182–193
科研通智能强力驱动
Strongly Powered by AbleSci AI