亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Neural Network Based Rolling-Element Bearing Fault Diagnosis for Naturally Occurring and Progressing Defects Using Time-Frequency Domain Features

卷积神经网络 光谱图 方位(导航) 计算机科学 断层(地质) 深度学习 滚动轴承 时域 频域 人工智能 模式识别(心理学) 信号(编程语言) 振动 包络线(雷达) 计算机视觉 声学 电信 地震学 程序设计语言 地质学 雷达 物理
作者
Vibhor Pandhare,Jaskaran Singh,Jay Lee
标识
DOI:10.1109/phm-paris.2019.00061
摘要

Convolutional Neural Networks (CNN) are becoming increasingly popular for bearing fault diagnosis due to their ability to automatically capture the sensitive fault information without the need for expert knowledge. Most of these applications are developed considering vibration data from artificially induced faults. However, bearing failure in real-life can show huge damage variations even within a single category of failure which artificially induced failures are unable to represent. Thus, in this paper, the performance of classical CNN is evaluated on bearings with naturally occurring and progressing defects from the Paderborn University Dataset. A three-class (Healthy, Inner Race Fault and Outer Race Fault) classification problem is solved considering five bearing conditions within each class. These conditions vary in terms of bearing operating hours, damage mode, damage repetition pattern, the extent of damage, etc. The classification accuracy is evaluated under two cases: (1) at least a portion of data from each bearing condition from all classes is used in training; (2) data from all available conditions are considered for training except from one condition which is used explicitly for testing. Within each case, the effect of changing the domain of the input data is evaluated on the achieved accuracy. Three input signals based on vibration data (raw time domain signal, envelope spectrum, and spectrogram) were explored for their representation effectiveness. The proposed CNN with a spectrogram of the vibration signal as input achieves better results than similar architectures. Finally, the potential challenges that come along with the implementation of Deep Learning technologies for industrial applications are discussed and future research directions are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaodouzi发布了新的文献求助10
2秒前
夜游关注了科研通微信公众号
5秒前
6秒前
iorpi完成签到,获得积分10
21秒前
邬稀雅发布了新的文献求助10
22秒前
研友_VZG7GZ应助风趣雅青采纳,获得10
22秒前
xl_c完成签到,获得积分10
26秒前
酷波er应助xiaodouzi采纳,获得10
26秒前
顾矜应助QianZhang采纳,获得10
26秒前
小星完成签到 ,获得积分10
28秒前
Moying发布了新的文献求助10
43秒前
Criminology34应助科研通管家采纳,获得10
45秒前
星辰大海应助科研通管家采纳,获得10
45秒前
45秒前
Moying完成签到,获得积分10
56秒前
59秒前
xiaodouzi完成签到,获得积分20
1分钟前
tutouganlan发布了新的文献求助10
1分钟前
Thanks完成签到 ,获得积分10
1分钟前
1分钟前
大模型应助ahhhh采纳,获得10
1分钟前
1分钟前
1分钟前
卡耐基完成签到 ,获得积分10
1分钟前
风趣手链发布了新的文献求助10
1分钟前
Hillson完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ljx完成签到 ,获得积分10
1分钟前
风趣雅青发布了新的文献求助10
1分钟前
1分钟前
1分钟前
王君青见完成签到,获得积分10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
桐桐应助尊敬的芷卉采纳,获得10
1分钟前
Owen应助尊敬的芷卉采纳,获得10
1分钟前
Jasper应助尊敬的芷卉采纳,获得10
1分钟前
桐桐应助尊敬的芷卉采纳,获得10
1分钟前
CodeCraft应助尊敬的芷卉采纳,获得10
1分钟前
orixero应助尊敬的芷卉采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432233
求助须知:如何正确求助?哪些是违规求助? 4544929
关于积分的说明 14194864
捐赠科研通 4464245
什么是DOI,文献DOI怎么找? 2447019
邀请新用户注册赠送积分活动 1438318
关于科研通互助平台的介绍 1415193