清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Convolutional Neural Network Based Rolling-Element Bearing Fault Diagnosis for Naturally Occurring and Progressing Defects Using Time-Frequency Domain Features

卷积神经网络 光谱图 方位(导航) 计算机科学 断层(地质) 深度学习 滚动轴承 时域 频域 人工智能 模式识别(心理学) 信号(编程语言) 振动 包络线(雷达) 计算机视觉 声学 电信 物理 地震学 地质学 雷达 程序设计语言
作者
Vibhor Pandhare,Jaskaran Singh,Jay Lee
标识
DOI:10.1109/phm-paris.2019.00061
摘要

Convolutional Neural Networks (CNN) are becoming increasingly popular for bearing fault diagnosis due to their ability to automatically capture the sensitive fault information without the need for expert knowledge. Most of these applications are developed considering vibration data from artificially induced faults. However, bearing failure in real-life can show huge damage variations even within a single category of failure which artificially induced failures are unable to represent. Thus, in this paper, the performance of classical CNN is evaluated on bearings with naturally occurring and progressing defects from the Paderborn University Dataset. A three-class (Healthy, Inner Race Fault and Outer Race Fault) classification problem is solved considering five bearing conditions within each class. These conditions vary in terms of bearing operating hours, damage mode, damage repetition pattern, the extent of damage, etc. The classification accuracy is evaluated under two cases: (1) at least a portion of data from each bearing condition from all classes is used in training; (2) data from all available conditions are considered for training except from one condition which is used explicitly for testing. Within each case, the effect of changing the domain of the input data is evaluated on the achieved accuracy. Three input signals based on vibration data (raw time domain signal, envelope spectrum, and spectrogram) were explored for their representation effectiveness. The proposed CNN with a spectrogram of the vibration signal as input achieves better results than similar architectures. Finally, the potential challenges that come along with the implementation of Deep Learning technologies for industrial applications are discussed and future research directions are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷平凡完成签到,获得积分10
13秒前
荔枝发布了新的文献求助10
47秒前
53秒前
连安阳完成签到,获得积分10
1分钟前
1分钟前
荔枝发布了新的文献求助10
2分钟前
丁老三完成签到 ,获得积分10
2分钟前
2分钟前
Jim发布了新的文献求助10
3分钟前
3分钟前
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
Unlisted发布了新的文献求助10
3分钟前
落寞的又菡完成签到,获得积分10
3分钟前
4分钟前
端庄洪纲完成签到 ,获得积分10
4分钟前
5分钟前
米修发布了新的文献求助10
5分钟前
5分钟前
米修完成签到,获得积分20
5分钟前
CodeCraft应助居家小可采纳,获得10
5分钟前
6分钟前
苗苗发布了新的文献求助10
6分钟前
6分钟前
苗苗完成签到 ,获得积分10
6分钟前
loathebm发布了新的文献求助10
6分钟前
NexusExplorer应助loathebm采纳,获得10
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
7分钟前
7分钟前
居家小可发布了新的文献求助10
7分钟前
我睡觉的时候不困完成签到 ,获得积分10
7分钟前
居家小可完成签到,获得积分10
7分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
7分钟前
如歌完成签到,获得积分10
8分钟前
不羁之魂完成签到,获得积分10
8分钟前
8分钟前
9分钟前
飞快的孱发布了新的文献求助10
9分钟前
CYT完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108