Convolutional Neural Network Based Rolling-Element Bearing Fault Diagnosis for Naturally Occurring and Progressing Defects Using Time-Frequency Domain Features

卷积神经网络 光谱图 方位(导航) 计算机科学 断层(地质) 深度学习 滚动轴承 时域 频域 人工智能 模式识别(心理学) 信号(编程语言) 振动 包络线(雷达) 计算机视觉 声学 电信 地震学 程序设计语言 地质学 雷达 物理
作者
Vibhor Pandhare,Jaskaran Singh,Jay Lee
标识
DOI:10.1109/phm-paris.2019.00061
摘要

Convolutional Neural Networks (CNN) are becoming increasingly popular for bearing fault diagnosis due to their ability to automatically capture the sensitive fault information without the need for expert knowledge. Most of these applications are developed considering vibration data from artificially induced faults. However, bearing failure in real-life can show huge damage variations even within a single category of failure which artificially induced failures are unable to represent. Thus, in this paper, the performance of classical CNN is evaluated on bearings with naturally occurring and progressing defects from the Paderborn University Dataset. A three-class (Healthy, Inner Race Fault and Outer Race Fault) classification problem is solved considering five bearing conditions within each class. These conditions vary in terms of bearing operating hours, damage mode, damage repetition pattern, the extent of damage, etc. The classification accuracy is evaluated under two cases: (1) at least a portion of data from each bearing condition from all classes is used in training; (2) data from all available conditions are considered for training except from one condition which is used explicitly for testing. Within each case, the effect of changing the domain of the input data is evaluated on the achieved accuracy. Three input signals based on vibration data (raw time domain signal, envelope spectrum, and spectrogram) were explored for their representation effectiveness. The proposed CNN with a spectrogram of the vibration signal as input achieves better results than similar architectures. Finally, the potential challenges that come along with the implementation of Deep Learning technologies for industrial applications are discussed and future research directions are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助zoey采纳,获得10
刚刚
开朗的觅山完成签到,获得积分10
刚刚
2秒前
2秒前
领导范儿应助梨懵懵采纳,获得10
2秒前
爱辣0鸡米完成签到,获得积分10
3秒前
七七丫完成签到,获得积分10
4秒前
5秒前
aurora发布了新的文献求助10
5秒前
学吗你关注了科研通微信公众号
5秒前
枣核儿发布了新的文献求助10
6秒前
6秒前
CR7应助乔乔兔采纳,获得10
8秒前
彭于晏应助乔乔兔采纳,获得10
8秒前
酷波er应助乔乔兔采纳,获得10
8秒前
小二郎应助乔乔兔采纳,获得10
8秒前
大模型应助乔乔兔采纳,获得10
8秒前
sunrise完成签到,获得积分20
8秒前
9秒前
我爱科研完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
tixian完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
rorocris完成签到,获得积分20
12秒前
12秒前
lrll应助继续加油吧采纳,获得10
14秒前
刘星星发布了新的文献求助10
14秒前
YDM发布了新的文献求助10
15秒前
16秒前
NJY发布了新的文献求助10
16秒前
mijia发布了新的文献求助10
17秒前
17秒前
zxcharm完成签到,获得积分10
18秒前
18秒前
璐璐发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023484
求助须知:如何正确求助?哪些是违规求助? 3563470
关于积分的说明 11342764
捐赠科研通 3294965
什么是DOI,文献DOI怎么找? 1814847
邀请新用户注册赠送积分活动 889554
科研通“疑难数据库(出版商)”最低求助积分说明 812979