亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Neural Network Based Rolling-Element Bearing Fault Diagnosis for Naturally Occurring and Progressing Defects Using Time-Frequency Domain Features

卷积神经网络 光谱图 方位(导航) 计算机科学 断层(地质) 深度学习 滚动轴承 时域 频域 人工智能 模式识别(心理学) 信号(编程语言) 振动 包络线(雷达) 计算机视觉 声学 电信 地震学 程序设计语言 地质学 雷达 物理
作者
Vibhor Pandhare,Jaskaran Singh,Jay Lee
标识
DOI:10.1109/phm-paris.2019.00061
摘要

Convolutional Neural Networks (CNN) are becoming increasingly popular for bearing fault diagnosis due to their ability to automatically capture the sensitive fault information without the need for expert knowledge. Most of these applications are developed considering vibration data from artificially induced faults. However, bearing failure in real-life can show huge damage variations even within a single category of failure which artificially induced failures are unable to represent. Thus, in this paper, the performance of classical CNN is evaluated on bearings with naturally occurring and progressing defects from the Paderborn University Dataset. A three-class (Healthy, Inner Race Fault and Outer Race Fault) classification problem is solved considering five bearing conditions within each class. These conditions vary in terms of bearing operating hours, damage mode, damage repetition pattern, the extent of damage, etc. The classification accuracy is evaluated under two cases: (1) at least a portion of data from each bearing condition from all classes is used in training; (2) data from all available conditions are considered for training except from one condition which is used explicitly for testing. Within each case, the effect of changing the domain of the input data is evaluated on the achieved accuracy. Three input signals based on vibration data (raw time domain signal, envelope spectrum, and spectrogram) were explored for their representation effectiveness. The proposed CNN with a spectrogram of the vibration signal as input achieves better results than similar architectures. Finally, the potential challenges that come along with the implementation of Deep Learning technologies for industrial applications are discussed and future research directions are proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
44秒前
草木完成签到,获得积分20
1分钟前
1分钟前
神医magical发布了新的文献求助10
1分钟前
求助人员应助草木采纳,获得10
1分钟前
求助人员应助草木采纳,获得10
1分钟前
1分钟前
王王碎冰冰应助神医magical采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
MiaMia应助科研通管家采纳,获得10
1分钟前
2分钟前
Alisha完成签到,获得积分10
2分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
3分钟前
Whisper完成签到,获得积分10
3分钟前
子平完成签到 ,获得积分0
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
wave8013完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
丘比特应助神医magical采纳,获得10
5分钟前
ceeray23发布了新的文献求助20
5分钟前
烂漫的绿茶完成签到 ,获得积分10
5分钟前
打打应助orion采纳,获得10
5分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
loii应助科研通管家采纳,获得200
5分钟前
王王碎冰冰应助ceeray23采纳,获得20
6分钟前
小铭同学完成签到,获得积分10
6分钟前
王王碎冰冰应助ceeray23采纳,获得20
6分钟前
6分钟前
orion发布了新的文献求助10
6分钟前
传奇3应助hhhhhh采纳,获得10
6分钟前
科研通AI6应助危机的尔琴采纳,获得10
6分钟前
7分钟前
微卫星不稳定完成签到 ,获得积分0
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628340
求助须知:如何正确求助?哪些是违规求助? 4716641
关于积分的说明 14964095
捐赠科研通 4786081
什么是DOI,文献DOI怎么找? 2555604
邀请新用户注册赠送积分活动 1516845
关于科研通互助平台的介绍 1477392