已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolutional Neural Network Based Rolling-Element Bearing Fault Diagnosis for Naturally Occurring and Progressing Defects Using Time-Frequency Domain Features

卷积神经网络 光谱图 方位(导航) 计算机科学 断层(地质) 深度学习 滚动轴承 时域 频域 人工智能 模式识别(心理学) 信号(编程语言) 振动 包络线(雷达) 计算机视觉 声学 电信 地震学 程序设计语言 地质学 雷达 物理
作者
Vibhor Pandhare,Jaskaran Singh,Jay Lee
标识
DOI:10.1109/phm-paris.2019.00061
摘要

Convolutional Neural Networks (CNN) are becoming increasingly popular for bearing fault diagnosis due to their ability to automatically capture the sensitive fault information without the need for expert knowledge. Most of these applications are developed considering vibration data from artificially induced faults. However, bearing failure in real-life can show huge damage variations even within a single category of failure which artificially induced failures are unable to represent. Thus, in this paper, the performance of classical CNN is evaluated on bearings with naturally occurring and progressing defects from the Paderborn University Dataset. A three-class (Healthy, Inner Race Fault and Outer Race Fault) classification problem is solved considering five bearing conditions within each class. These conditions vary in terms of bearing operating hours, damage mode, damage repetition pattern, the extent of damage, etc. The classification accuracy is evaluated under two cases: (1) at least a portion of data from each bearing condition from all classes is used in training; (2) data from all available conditions are considered for training except from one condition which is used explicitly for testing. Within each case, the effect of changing the domain of the input data is evaluated on the achieved accuracy. Three input signals based on vibration data (raw time domain signal, envelope spectrum, and spectrogram) were explored for their representation effectiveness. The proposed CNN with a spectrogram of the vibration signal as input achieves better results than similar architectures. Finally, the potential challenges that come along with the implementation of Deep Learning technologies for industrial applications are discussed and future research directions are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
教生物的杨教授给教生物的杨教授的求助进行了留言
1秒前
刘春秀完成签到,获得积分20
2秒前
聪慧的乌发布了新的文献求助10
3秒前
haoliangshi发布了新的文献求助10
5秒前
xmy完成签到,获得积分10
7秒前
CipherSage应助haoliangshi采纳,获得10
9秒前
9秒前
彭于晏应助dududu采纳,获得10
10秒前
Ren完成签到 ,获得积分10
14秒前
15秒前
15秒前
徐婷完成签到,获得积分10
15秒前
qs完成签到 ,获得积分20
18秒前
浪迹青丘狐完成签到 ,获得积分10
21秒前
科研通AI2S应助深情的友易采纳,获得10
22秒前
23秒前
24秒前
研友_5Y9Z75完成签到 ,获得积分0
25秒前
竹筏过海完成签到,获得积分0
25秒前
迷路竹完成签到,获得积分10
25秒前
张小南完成签到,获得积分10
27秒前
wws发布了新的文献求助10
28秒前
bkagyin应助dududu采纳,获得10
28秒前
29秒前
深情若云完成签到 ,获得积分10
33秒前
36秒前
不想制造学术垃圾的垃圾完成签到 ,获得积分10
37秒前
38秒前
老实醉冬发布了新的文献求助10
40秒前
魔幻安南完成签到 ,获得积分10
42秒前
42秒前
44秒前
GGBOND完成签到,获得积分10
45秒前
45秒前
45秒前
Simon完成签到,获得积分10
45秒前
希望天下0贩的0应助liaojun采纳,获得10
48秒前
一早发布了新的文献求助10
48秒前
yzr01发布了新的文献求助10
48秒前
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
The Experimental Biology of Bryophytes 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5366158
求助须知:如何正确求助?哪些是违规求助? 4494989
关于积分的说明 13995031
捐赠科研通 4399220
什么是DOI,文献DOI怎么找? 2416503
邀请新用户注册赠送积分活动 1409310
关于科研通互助平台的介绍 1384358