Convolutional Neural Network Based Rolling-Element Bearing Fault Diagnosis for Naturally Occurring and Progressing Defects Using Time-Frequency Domain Features

卷积神经网络 光谱图 方位(导航) 计算机科学 断层(地质) 深度学习 滚动轴承 时域 频域 人工智能 模式识别(心理学) 信号(编程语言) 振动 包络线(雷达) 计算机视觉 声学 电信 地震学 程序设计语言 地质学 雷达 物理
作者
Vibhor Pandhare,Jaskaran Singh,Jay Lee
标识
DOI:10.1109/phm-paris.2019.00061
摘要

Convolutional Neural Networks (CNN) are becoming increasingly popular for bearing fault diagnosis due to their ability to automatically capture the sensitive fault information without the need for expert knowledge. Most of these applications are developed considering vibration data from artificially induced faults. However, bearing failure in real-life can show huge damage variations even within a single category of failure which artificially induced failures are unable to represent. Thus, in this paper, the performance of classical CNN is evaluated on bearings with naturally occurring and progressing defects from the Paderborn University Dataset. A three-class (Healthy, Inner Race Fault and Outer Race Fault) classification problem is solved considering five bearing conditions within each class. These conditions vary in terms of bearing operating hours, damage mode, damage repetition pattern, the extent of damage, etc. The classification accuracy is evaluated under two cases: (1) at least a portion of data from each bearing condition from all classes is used in training; (2) data from all available conditions are considered for training except from one condition which is used explicitly for testing. Within each case, the effect of changing the domain of the input data is evaluated on the achieved accuracy. Three input signals based on vibration data (raw time domain signal, envelope spectrum, and spectrogram) were explored for their representation effectiveness. The proposed CNN with a spectrogram of the vibration signal as input achieves better results than similar architectures. Finally, the potential challenges that come along with the implementation of Deep Learning technologies for industrial applications are discussed and future research directions are proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ll采纳,获得10
1秒前
DYT完成签到,获得积分10
2秒前
2秒前
快乐芷荷完成签到 ,获得积分10
2秒前
不知如何写论文的人完成签到 ,获得积分10
3秒前
Qiuqiu发布了新的文献求助10
4秒前
5秒前
尤寄风发布了新的文献求助10
7秒前
俊逸海瑶关注了科研通微信公众号
9秒前
风中的芷蕾完成签到,获得积分10
9秒前
怡然念之完成签到,获得积分10
9秒前
10秒前
10秒前
宋宋发布了新的文献求助10
10秒前
苗条的依珊完成签到 ,获得积分10
11秒前
yyj完成签到,获得积分10
12秒前
Qiuqiu完成签到,获得积分10
13秒前
15秒前
DONG发布了新的文献求助10
16秒前
younghippo发布了新的文献求助10
16秒前
爱听歌的夏烟完成签到,获得积分10
17秒前
leezh完成签到,获得积分10
18秒前
彭于晏应助ZJT采纳,获得10
20秒前
zuobusi完成签到 ,获得积分10
21秒前
pai完成签到 ,获得积分10
22秒前
突突突完成签到,获得积分10
28秒前
那只幸运的小肥羊完成签到,获得积分10
28秒前
mr_chxb82完成签到,获得积分20
30秒前
31秒前
acadedog完成签到,获得积分10
33秒前
俊逸海瑶发布了新的文献求助10
35秒前
suliang完成签到,获得积分10
39秒前
科研通AI6应助younghippo采纳,获得10
41秒前
ZJT发布了新的文献求助10
41秒前
43秒前
小桃发布了新的文献求助10
44秒前
epmoct完成签到 ,获得积分10
44秒前
七里野草完成签到,获得积分10
46秒前
研友_8oBQ3Z发布了新的文献求助10
47秒前
吴慧琼完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565659
求助须知:如何正确求助?哪些是违规求助? 4650681
关于积分的说明 14692465
捐赠科研通 4592676
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463315