亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Neural Network Based Rolling-Element Bearing Fault Diagnosis for Naturally Occurring and Progressing Defects Using Time-Frequency Domain Features

卷积神经网络 光谱图 方位(导航) 计算机科学 断层(地质) 深度学习 滚动轴承 时域 频域 人工智能 模式识别(心理学) 信号(编程语言) 振动 包络线(雷达) 计算机视觉 声学 电信 地震学 程序设计语言 地质学 雷达 物理
作者
Vibhor Pandhare,Jaskaran Singh,Jay Lee
标识
DOI:10.1109/phm-paris.2019.00061
摘要

Convolutional Neural Networks (CNN) are becoming increasingly popular for bearing fault diagnosis due to their ability to automatically capture the sensitive fault information without the need for expert knowledge. Most of these applications are developed considering vibration data from artificially induced faults. However, bearing failure in real-life can show huge damage variations even within a single category of failure which artificially induced failures are unable to represent. Thus, in this paper, the performance of classical CNN is evaluated on bearings with naturally occurring and progressing defects from the Paderborn University Dataset. A three-class (Healthy, Inner Race Fault and Outer Race Fault) classification problem is solved considering five bearing conditions within each class. These conditions vary in terms of bearing operating hours, damage mode, damage repetition pattern, the extent of damage, etc. The classification accuracy is evaluated under two cases: (1) at least a portion of data from each bearing condition from all classes is used in training; (2) data from all available conditions are considered for training except from one condition which is used explicitly for testing. Within each case, the effect of changing the domain of the input data is evaluated on the achieved accuracy. Three input signals based on vibration data (raw time domain signal, envelope spectrum, and spectrogram) were explored for their representation effectiveness. The proposed CNN with a spectrogram of the vibration signal as input achieves better results than similar architectures. Finally, the potential challenges that come along with the implementation of Deep Learning technologies for industrial applications are discussed and future research directions are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纪震宇发布了新的文献求助10
1秒前
bingbing34发布了新的文献求助10
2秒前
DrLee完成签到,获得积分10
5秒前
桐桐应助纪震宇采纳,获得10
6秒前
清风完成签到 ,获得积分10
12秒前
13秒前
梦华老师发布了新的文献求助10
18秒前
堆起的石头完成签到,获得积分10
22秒前
23秒前
妖精完成签到,获得积分10
26秒前
妖精发布了新的文献求助10
29秒前
慌慌张张的张张完成签到 ,获得积分10
37秒前
38秒前
43秒前
44秒前
TJY发布了新的文献求助100
45秒前
科研通AI5应助dd采纳,获得30
49秒前
51秒前
领导范儿应助bingbing34采纳,获得10
52秒前
爱静静应助VDC采纳,获得10
54秒前
54秒前
gqqq发布了新的文献求助10
56秒前
darkpigx完成签到,获得积分10
57秒前
linnett完成签到,获得积分10
58秒前
南山荣熙发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
冷静茉莉完成签到 ,获得积分10
1分钟前
困困发布了新的文献求助10
1分钟前
bingbing34发布了新的文献求助10
1分钟前
docyuchi发布了新的文献求助10
1分钟前
南山荣熙完成签到,获得积分10
1分钟前
AnJaShua完成签到 ,获得积分10
1分钟前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
情怀应助困困采纳,获得10
1分钟前
科研小白完成签到 ,获得积分10
1分钟前
docyuchi完成签到,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121546
关于积分的说明 9347835
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273