Structural Characterization of O3-Structure Layered Cathode Material for Rechargeable Sodium Ion Batteries

氧烷 插层(化学) 电化学 阴极 过渡金属 材料科学 无机化学 氧化物 离子 氧化还原 化学 电极 物理化学 谱线 冶金 催化作用 生物化学 物理 有机化学 天文
作者
Mihee Jeong,Hayeon Lee,Hyunyoung Park,Sangyoon Lee,Won‐Sub Yoon
出处
期刊:Meeting abstracts 卷期号:MA2018-02 (5): 385-385
标识
DOI:10.1149/ma2018-02/5/385
摘要

Sodium ion batteries (SIBs) have emerged as suitable alternative energy storage systems to Li ion batteries (LIBs) due to the cost-effective and ample Na source. Sodium layered oxides have considerable attention as cathodes for Na-ion batteries due to easy synthesis and simple structure. O3-type NaTMO 2 materials, where single transition metal is an oxidizable element such as Cr, Mn, Fe, Co, Ni [1], have the capability to reversible intercalation reaction of Na ions [2,3], which is different from their Li analogues system, where only nickel and cobalt do reversible intercalation of Li ions [4]. Furthermore, various mixed transition metals can be realized in the TM layer to create new oxide compounds [5,6]. Among them, O3-NaNi 1/3 Fe 1/3 Mn 1/3 O 2 shows a capacity around 130 mAh/g with good capacity retention when cycled to 4.0 V [7]. In this study, layered sodium-ion battery cathode material, O3-type NaNi 1/3 Fe 1/3 Mn 1/3 O 2 , was systematically investigated by using synchrotron-based x-ray techniques to characterize the detailed redox mechanism during electrochemical process and to understand the role of each transition metal structural behavior in the ternary-element material. In Figure 1 , reversible changes in the Ni, Fe, and Mn K-edge X-ray Absorption Near Edge Structure (XANES) spectra show that reversible electronic structural changes in the local level during Na + deintercalation/intercalation in the voltage range of 2.0 – 4.0 V. Moreover, Ni and Fe elements are both active in Na 1–x Ni 1/3 Fe 1/3 Mn 1/3 O 2 cathode and redox couples of Ni 2+ /Ni 3+ /Ni 4+ and Fe 3+ /Fe 4+ are responsible for the charge compensation mechanism. High Resolution Powder Diffraction (HRPD) results reveal that O3-type ( R-3m ) phase transforms into a P3 ( R3m ) structure coupled with Na + /vacancy ordering during charge and further elucidate the final P3-OP2 of phase transformation on over-sodiated state. Furthermore, in the structure with the small quantity of sodium, internal Fe ion migration occurs from octahedral site into tetrahedral site, which is possible due to formed vacant space by highly deintercalation of Na ions and this atomic level of movement causes the layered structure to have structural distortions. An in-depth analysis of the structural behavior and reaction mechanism for NaNi 1/3 Fe 1/3 Mn 1/3 O 2 cathode material when the Na ions are used of the entire composition widens an electrochemical perspective and suggests a direction where we better understand the nature of structure which can be used as the cathode for the advanced rechargeable batteries with high energy density. From these experimental results, we will discuss structural evolution behavior of layered NaNi 1/3 Fe 1/3 Mn­ 1/3 O 2 cathode material. More detailed results and discussion including reaction process of Ni, Fe, and Mn in the material will be presented in the AiMES 2018 meeting. Figure 1. XANES spectra of (a, b) Ni K-edge, (c,d) Fe K-edge, and (e,f) Mn K-edge during the 1 st cycle of Na + deintercalation/intercalation process. Reference s : [1] C. Delmas, C. Fouassier, P. Hagenmuller, Phys. B + C 99B (1980) 81–85. [2] S. Komaba, C. Takei, T.Nakayama,A.Ogata,N. Yabuuchi, Electrochem. Commun. 12 (2010) 355–358. [3] N. Yabuuchi, H. Yoshida, S. Komaba, Electrochemistry 80 (2012) 716. [4] S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, et al., Energy Environ. Sci. 4 (2011) [5] I. Saadoune, A. Maazaz, M. Menetrier, C. Delmas, J. Solid State Chem. 117 (1996) 111–117. [6] M. Sathiya, K. Hemalatha, K. Ramesha, J.-M. Tarascon, A.S. Prakash, Chem. Mater. 24 (2012) 1846–1853. [7] D. Kim, E. Lee, M. Slater, W. Q. Lu, S. Rood, C. S. Johnson, Electrochem. Commun. (2012), 18, 66. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Billie完成签到,获得积分10
1秒前
王冬瓜发布了新的文献求助10
1秒前
3秒前
3秒前
Sean发布了新的文献求助10
4秒前
Ava应助哭泣夏之采纳,获得30
4秒前
Jenny应助椿·采纳,获得150
4秒前
动人的怀柔完成签到,获得积分10
6秒前
6秒前
ling361完成签到,获得积分10
6秒前
迟大猫给zhouleiwang的求助进行了留言
7秒前
小汁完成签到 ,获得积分10
7秒前
久9完成签到 ,获得积分10
8秒前
雪白的雪完成签到,获得积分10
8秒前
Lucas应助可爱的雪卉采纳,获得10
9秒前
科研通AI5应助saviour采纳,获得10
9秒前
科研通AI5应助齐齐齐采纳,获得10
9秒前
Symbol发布了新的文献求助10
9秒前
杳鸢应助Jerry聪采纳,获得30
9秒前
卡萨卡萨发布了新的文献求助10
9秒前
阿藏完成签到,获得积分10
10秒前
12秒前
长江长发布了新的文献求助10
12秒前
隐形曼青应助高大雁兰采纳,获得10
12秒前
jenny完成签到 ,获得积分10
13秒前
科研通AI5应助Yuanyuan采纳,获得10
13秒前
大模型应助M二十四采纳,获得10
13秒前
14秒前
空白山应助会飞的YU采纳,获得35
15秒前
小小鱼完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
陈南伊完成签到,获得积分20
18秒前
太阳alright发布了新的文献求助10
19秒前
一一完成签到,获得积分10
20秒前
jialing驳回了Leon应助
20秒前
领导范儿应助qzj采纳,获得10
20秒前
王冬瓜完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560897
求助须知:如何正确求助?哪些是违规求助? 3134711
关于积分的说明 9409189
捐赠科研通 2834950
什么是DOI,文献DOI怎么找? 1558310
邀请新用户注册赠送积分活动 728082
科研通“疑难数据库(出版商)”最低求助积分说明 716686