Resonance‐Activated Spin‐Flipping for Efficient Organic Ultralong Room‐Temperature Phosphorescence

系统间交叉 磷光 材料科学 共振(粒子物理) 激子 有机电子学 激发态 自旋(空气动力学) 分子 光电子学 三重态 杂原子 单重态 化学物理 纳米技术 原子物理学 物理 凝聚态物理 化学 荧光 光学 晶体管 有机化学 电压 热力学 量子力学 戒指(化学)
作者
Ye Tao,Runfeng Chen,Huanhuan Li,Jie Yuan,Yifang Wan,He Jiang,Cailin Chen,Yubing Si,Chao Zheng,Baocheng Yang,Guichuan Xing,Wei Huang
出处
期刊:Advanced Materials [Wiley]
卷期号:30 (44) 被引量:192
标识
DOI:10.1002/adma.201803856
摘要

Abstract Triplet‐excited‐state‐involved photonic and electronic properties have attracted tremendous attention for next‐generation technologies. To populate triplet states, facile intersystem crossing (ISC) for efficient exciton spin‐flipping is crucial, but it remains challenging in organic molecules free of heavy atoms. Here, a new strategy is proposed to enhance the ISC of purely organic optoelectronic molecules using heteroatom‐mediated resonance structures capable of promoting spin‐flipping at large singlet–triplet splitting energies with the aid of the fluctuation of the state energy and n‐orbital component upon self‐adaptive resonance variation. Combined experimental and theoretical investigations confirm the key contributions of the resonance variation to the profoundly promoted spin‐flipping with ISC rate up to ≈10 7 s −1 in the rationally designed NPX (X = O or S) resonance molecules. Importantly, efficient organic ultralong room‐temperature phosphorescence (OURTP) with simultaneously elongated lifetime and improved efficiency results overcoming the intrinsic competition between the OURTP lifetime and efficiency. With the spectacular resonance‐activated OURTP molecules, time‐resolved and color‐coded quick response code devices with multiple information encryptions are realized, demonstrating the fundamental significance of this approach in boosting ISC dynamically for advanced optoelectronic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助京阿尼采纳,获得10
1秒前
甜甜晓露完成签到,获得积分10
2秒前
科研通AI5应助qifa采纳,获得10
2秒前
shrike完成签到 ,获得积分10
2秒前
有魅力白开水完成签到,获得积分20
2秒前
小蒲完成签到 ,获得积分10
3秒前
万能图书馆应助大力鱼采纳,获得10
3秒前
4秒前
Rrr发布了新的文献求助10
5秒前
跳跃的静曼完成签到,获得积分10
5秒前
丰富的不惜完成签到,获得积分10
6秒前
7秒前
wfc完成签到,获得积分10
7秒前
浅梨涡完成签到 ,获得积分10
9秒前
JamesPei应助椰子熟了耶采纳,获得20
10秒前
hanyang965发布了新的文献求助10
10秒前
orixero应助喵呜采纳,获得10
10秒前
10秒前
10秒前
11秒前
en发布了新的文献求助10
11秒前
12秒前
白宝宝北北白应助氕氘氚采纳,获得10
12秒前
13秒前
进取拼搏完成签到,获得积分10
13秒前
hehsk完成签到,获得积分10
13秒前
无限鞅完成签到,获得积分20
13秒前
14秒前
DY完成签到 ,获得积分10
15秒前
郑仕完成签到,获得积分10
15秒前
15秒前
进取拼搏发布了新的文献求助10
16秒前
顺顺发布了新的文献求助10
16秒前
16秒前
在水一方应助涛涛采纳,获得10
16秒前
英姑应助义气的傲松采纳,获得10
17秒前
17秒前
哭泣蛋挞完成签到 ,获得积分10
18秒前
sweetbearm应助通~采纳,获得10
18秒前
田様应助吃饭用大碗采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808