出租车
温室气体
TRIPS体系结构
运输工程
公共交通
电
环境科学
环境经济学
环境影响评价
能源消耗
汽车工程
计算机科学
工程类
经济
生态学
电气工程
生物
作者
Miaojia Lu,Morteza Taiebat,Ming Xu,Shu‐Chien Hsu
出处
期刊:Journal of urban planning and development
[American Society of Civil Engineers]
日期:2018-08-15
卷期号:144 (4)
被引量:54
标识
DOI:10.1061/(asce)up.1943-5444.0000469
摘要
With the likelihood of autonomous vehicle technologies in public transport and taxi systems increasing, their impact on commuting in real-world road networks is insufficiently studied. In this study, an agent-based model is developed to simulate how commuters travel by autonomous taxis (aTaxis) in real-world road networks. The model evaluates the travel costs and environmental implications of substituting conventional personal vehicle travel with aTaxi travel. The proposed model is applied to the city of Ann Arbor, Michigan, to demonstrate the effectiveness of aTaxis. The results indicate that to meet daily commute demand with wait times less than 3 min, the optimized autonomous taxi fleet size is only 20% of the conventional solo-commuting personal car fleet. Commuting cost decreases by 38%, and daily vehicle utilization increases from 14 to 92 min When using internal combustion engine aTaxis, energy consumption, greenhouse gas (GHG) emissions, and SO2 emissions are respectively 16, 25, and 10% higher than conventional solo commuting, mainly because of unoccupied repositioning between trips. Given the emission intensity of the local electricity grid, the environmental impacts of electric aTaxis do not show significant improvement over conventional vehicles.
科研通智能强力驱动
Strongly Powered by AbleSci AI