Optimization of COD determination by UV–vis spectroscopy using PLS chemometrics algorithms

偏最小二乘回归 化学计量学 校准 均方误差 数学 相关系数 分析化学(期刊) 最小二乘函数近似 算法 生物系统 计算机科学 统计 化学 色谱法 机器学习 估计员 生物
作者
Jingwei Li,Yifei Tong,Guan Li,Shaofeng Wu,Dongbo Li
出处
期刊:Optik [Elsevier]
卷期号:174: 591-599 被引量:21
标识
DOI:10.1016/j.ijleo.2018.08.111
摘要

Ultraviolet–visible (UV–vis) spectroscopy combined with chemometrics tools were used to determine chemical oxygen demand (COD) content in the water. 144 samples needed for the research were collected from the Qian Lake in Nanjing. UV–vis spectra (193.91–1121.69 nm) were collected and processed by various preprocessing methods. The samples were divided into calibration set and prediction set by sample set portioning based on joint x–y distance (SPXY) method. Then the spectra were optimized and modeled by interval partial least squares (iPLS), synergy interval partial least squares (siPLS) and moving windows partial least squares (mwPLS). Optimized COD prediction models were established and compared with full-spectrum partial least squares (PLS) models. Model performance was evaluated by the correlation coefficient of the prediction set (Rpred) and the root mean square error of prediction (RMSEP). The results demonstrate that the prediction results of PLS models established by the three spectral interval selection methods are superior to the full-spectrum PLS model. Furthermore, the siPLS model has the best performance (Rpred = 0.8334; RMSEP = 2.63). Therefore, the siPLS is the best COD prediction model obtained in this research, which can effectively select optimal spectral intervals and improve the prediction performance of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Aryac采纳,获得10
1秒前
1秒前
小包几发布了新的文献求助10
2秒前
2秒前
wuhanfei完成签到,获得积分10
2秒前
2秒前
11完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
梦境完成签到,获得积分10
3秒前
kobe0842完成签到,获得积分10
3秒前
寇博翔发布了新的文献求助10
4秒前
Ma发布了新的文献求助10
4秒前
萧瑟处完成签到,获得积分10
4秒前
柔弱的问梅完成签到,获得积分10
4秒前
Sunday驳回了Twonej应助
4秒前
余如龙完成签到,获得积分10
6秒前
合适的代秋完成签到 ,获得积分10
6秒前
6秒前
科研通AI6应助独特的斑马采纳,获得10
7秒前
ww发布了新的文献求助10
7秒前
7秒前
孙浩洋发布了新的文献求助10
7秒前
7秒前
陈翔完成签到,获得积分10
8秒前
Ava应助甜甜青旋采纳,获得10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
Deathroid完成签到,获得积分10
10秒前
时荒发布了新的文献求助10
10秒前
小米完成签到,获得积分10
10秒前
11秒前
灵巧的斓完成签到,获得积分10
11秒前
12秒前
Aryac完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助Ma采纳,获得10
13秒前
遲悟篤行完成签到,获得积分10
14秒前
尹雪儿完成签到,获得积分10
14秒前
充电宝应助qq采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041