Optimization of COD determination by UV–vis spectroscopy using PLS chemometrics algorithms

偏最小二乘回归 化学计量学 校准 均方误差 数学 相关系数 分析化学(期刊) 最小二乘函数近似 算法 生物系统 计算机科学 统计 化学 色谱法 机器学习 生物 估计员
作者
Jingwei Li,Yifei Tong,Guan Li,Shaofeng Wu,Dongbo Li
出处
期刊:Optik [Elsevier]
卷期号:174: 591-599 被引量:21
标识
DOI:10.1016/j.ijleo.2018.08.111
摘要

Ultraviolet–visible (UV–vis) spectroscopy combined with chemometrics tools were used to determine chemical oxygen demand (COD) content in the water. 144 samples needed for the research were collected from the Qian Lake in Nanjing. UV–vis spectra (193.91–1121.69 nm) were collected and processed by various preprocessing methods. The samples were divided into calibration set and prediction set by sample set portioning based on joint x–y distance (SPXY) method. Then the spectra were optimized and modeled by interval partial least squares (iPLS), synergy interval partial least squares (siPLS) and moving windows partial least squares (mwPLS). Optimized COD prediction models were established and compared with full-spectrum partial least squares (PLS) models. Model performance was evaluated by the correlation coefficient of the prediction set (Rpred) and the root mean square error of prediction (RMSEP). The results demonstrate that the prediction results of PLS models established by the three spectral interval selection methods are superior to the full-spectrum PLS model. Furthermore, the siPLS model has the best performance (Rpred = 0.8334; RMSEP = 2.63). Therefore, the siPLS is the best COD prediction model obtained in this research, which can effectively select optimal spectral intervals and improve the prediction performance of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉海露完成签到,获得积分10
刚刚
刚刚
苗槐完成签到,获得积分10
刚刚
阳光的沉鱼完成签到,获得积分10
刚刚
大模型应助白华苍松采纳,获得10
1秒前
zyp应助火焰向上采纳,获得10
1秒前
1秒前
123456完成签到,获得积分10
1秒前
深情安青应助半颗橙子采纳,获得10
1秒前
CodeCraft应助123采纳,获得10
2秒前
隐形曼青应助心花怒放采纳,获得10
2秒前
酷酷的如天完成签到,获得积分10
2秒前
2秒前
常常完成签到,获得积分10
2秒前
2秒前
HH完成签到,获得积分10
2秒前
3秒前
3秒前
SandyH完成签到,获得积分10
3秒前
Jack完成签到,获得积分10
3秒前
白露完成签到 ,获得积分10
3秒前
Owen应助默默柚子采纳,获得10
4秒前
4秒前
隐形的易巧完成签到 ,获得积分10
4秒前
5秒前
Ava应助Autoimmune采纳,获得10
5秒前
科研通AI5应助多变的卡宾采纳,获得10
5秒前
Citrus发布了新的文献求助10
6秒前
科目三应助莉莉采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
惠惠发布了新的文献求助10
7秒前
深夜看文献的小刘完成签到,获得积分10
7秒前
菊菊发布了新的文献求助10
7秒前
7秒前
猪猪发布了新的文献求助10
8秒前
胖豆发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762