Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type

医学 黑色素瘤 接收机工作特性 流体衰减反转恢复 肺癌 磁共振成像 核医学 放射科 病理 内科学 癌症研究
作者
Helge Kniep,Frederic Madesta,Tanja Schneider,Uta Hanning,Michael Schönfeld,Gerhard Schön,Jens Fiehler,Tobias Gauer,René Werner,Susanne Siemonsen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:290 (2): 479-487 被引量:173
标识
DOI:10.1148/radiol.2018180946
摘要

Purpose To investigate the feasibility of tumor type prediction with MRI radiomic image features of different brain metastases in a multiclass machine learning approach for patients with unknown primary lesion at the time of diagnosis. Materials and methods This single-center retrospective analysis included radiomic features of 658 brain metastases from T1-weighted contrast material–enhanced, T1-weighted nonenhanced, and fluid-attenuated inversion recovery (FLAIR) images in 189 patients (101 women, 88 men; mean age, 61 years; age range, 32–85 years). Images were acquired over a 9-year period (from September 2007 through December 2016) with different MRI units, reflecting heterogeneous image data. Included metastases originated from breast cancer (n = 143), small cell lung cancer (n = 151), non–small cell lung cancer (n = 225), gastrointestinal cancer (n = 50), and melanoma (n = 89). A total of 1423 quantitative image features and basic clinical data were evaluated by using random forest machine learning algorithms. Validation was performed with model-external fivefold cross validation. Comparative analysis of 10 randomly drawn cross-validation sets verified the stability of the results. The classifier performance was compared with predictions from a respective conventional reading by two radiologists. Results Areas under the receiver operating characteristic curve of the five-class problem ranged between 0.64 (for non–small cell lung cancer) and 0.82 (for melanoma); all P values were less than .01. Prediction performance of the classifier was superior to the radiologists’ readings. Highest differences were observed for melanoma, with a 17-percentage-point gain in sensitivity compared with the sensitivity of both readers; P values were less than .02. Conclusion Quantitative features of routine brain MR images used in a machine learning classifier provided high discriminatory accuracy in predicting the tumor type of brain metastases. © RSNA, 2018 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
细腻白柏完成签到,获得积分10
刚刚
刚刚
麦满分完成签到,获得积分10
1秒前
长度2到发布了新的文献求助10
1秒前
Alicia完成签到,获得积分10
2秒前
西瓜大虫完成签到,获得积分10
2秒前
害羞聋五发布了新的文献求助10
3秒前
prosperp完成签到,获得积分0
3秒前
Hongsong完成签到,获得积分20
3秒前
prosperp应助背侧丘脑采纳,获得10
4秒前
好好发布了新的文献求助10
4秒前
gaos发布了新的文献求助10
4秒前
einuo发布了新的文献求助10
5秒前
001完成签到,获得积分20
5秒前
李健应助阔达萧采纳,获得10
5秒前
陆离发布了新的文献求助10
5秒前
6秒前
66应助雪白红紫采纳,获得10
6秒前
英俊的铭应助东郭南松采纳,获得10
6秒前
YANG完成签到 ,获得积分10
7秒前
冷酷哈密瓜完成签到,获得积分10
8秒前
岁月流年完成签到,获得积分10
8秒前
8秒前
9秒前
8个老登发布了新的文献求助10
10秒前
douzi完成签到,获得积分10
10秒前
Li完成签到,获得积分10
10秒前
Macaco完成签到,获得积分10
11秒前
研友_8Yo3dn完成签到,获得积分10
11秒前
lilac完成签到,获得积分10
11秒前
misalia发布了新的文献求助10
11秒前
judy发布了新的文献求助10
11秒前
12秒前
李健的小迷弟应助称心铭采纳,获得30
12秒前
12秒前
adfadf发布了新的文献求助10
12秒前
CC完成签到,获得积分10
12秒前
1234567890完成签到,获得积分10
12秒前
彩色夏波发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678