Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type

医学 黑色素瘤 接收机工作特性 流体衰减反转恢复 肺癌 磁共振成像 核医学 放射科 病理 内科学 癌症研究
作者
Helge Kniep,Frederic Madesta,Tanja Schneider,Uta Hanning,Michael Schönfeld,Gerhard Schön,Jens Fiehler,Tobias Gauer,René Werner,Susanne Siemonsen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:290 (2): 479-487 被引量:173
标识
DOI:10.1148/radiol.2018180946
摘要

Purpose To investigate the feasibility of tumor type prediction with MRI radiomic image features of different brain metastases in a multiclass machine learning approach for patients with unknown primary lesion at the time of diagnosis. Materials and methods This single-center retrospective analysis included radiomic features of 658 brain metastases from T1-weighted contrast material–enhanced, T1-weighted nonenhanced, and fluid-attenuated inversion recovery (FLAIR) images in 189 patients (101 women, 88 men; mean age, 61 years; age range, 32–85 years). Images were acquired over a 9-year period (from September 2007 through December 2016) with different MRI units, reflecting heterogeneous image data. Included metastases originated from breast cancer (n = 143), small cell lung cancer (n = 151), non–small cell lung cancer (n = 225), gastrointestinal cancer (n = 50), and melanoma (n = 89). A total of 1423 quantitative image features and basic clinical data were evaluated by using random forest machine learning algorithms. Validation was performed with model-external fivefold cross validation. Comparative analysis of 10 randomly drawn cross-validation sets verified the stability of the results. The classifier performance was compared with predictions from a respective conventional reading by two radiologists. Results Areas under the receiver operating characteristic curve of the five-class problem ranged between 0.64 (for non–small cell lung cancer) and 0.82 (for melanoma); all P values were less than .01. Prediction performance of the classifier was superior to the radiologists’ readings. Highest differences were observed for melanoma, with a 17-percentage-point gain in sensitivity compared with the sensitivity of both readers; P values were less than .02. Conclusion Quantitative features of routine brain MR images used in a machine learning classifier provided high discriminatory accuracy in predicting the tumor type of brain metastases. © RSNA, 2018 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gmc完成签到 ,获得积分10
1秒前
小橙子完成签到,获得积分10
1秒前
1秒前
tkzzz完成签到,获得积分10
1秒前
博修发布了新的文献求助30
2秒前
霏冉完成签到,获得积分10
2秒前
2秒前
旭爸爸发布了新的文献求助10
2秒前
医路有你完成签到 ,获得积分10
2秒前
HJJHJH发布了新的文献求助10
2秒前
mmc完成签到,获得积分10
3秒前
Felice完成签到,获得积分10
3秒前
3秒前
和abc完成签到,获得积分10
4秒前
KanmenRider完成签到,获得积分10
4秒前
刘子发布了新的文献求助10
5秒前
古德辣克完成签到,获得积分10
5秒前
5秒前
停婷完成签到,获得积分10
5秒前
NINISO完成签到,获得积分10
6秒前
梁家瑜完成签到,获得积分10
6秒前
搜集达人应助刘岩松采纳,获得10
6秒前
遐蝶发布了新的文献求助10
6秒前
橙子完成签到,获得积分10
7秒前
Oo。发布了新的文献求助50
7秒前
FashionBoy应助旭爸爸采纳,获得10
7秒前
7秒前
科研通AI2S应助YYY采纳,获得30
8秒前
8秒前
流白发布了新的文献求助10
9秒前
yan完成签到,获得积分10
9秒前
wx发布了新的文献求助10
9秒前
9秒前
欢呼灰狼完成签到,获得积分10
9秒前
领导范儿应助黄晓荷采纳,获得10
10秒前
1762120完成签到,获得积分10
10秒前
研友_8Yo3dn完成签到,获得积分10
10秒前
含糊的画板完成签到,获得积分10
10秒前
chenxi完成签到 ,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650