Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing and Networks

分布式计算 蜂窝网络 边缘设备 服务质量 调度(生产过程)
作者
Yi Liu,Haozheng Yu,Shengli Xie,Yan Zhang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (11): 11158-11168 被引量:327
标识
DOI:10.1109/tvt.2019.2935450
摘要

Mobile Edge Computing (MEC) is a promising technology to extend the diverse services to the edge of Internet of Things (IoT) system. However, the static edge server deployment may cause “service hole” in IoT networks in which the location and service requests of the User Equipments (UEs) may be dynamically changing. In this paper, we firstly explore a vehicle edge computing network architecture in which the vehicles can act as the mobile edge servers to provide computation services for nearby UEs. Then, we propose as vehicle-assisted offloading scheme for UEs while considering the delay of the computation task. Accordingly, an optimization problem is formulated to maximize the long-term utility of the vehicle edge computing network. Considering the stochastic vehicle traffic, dynamic computation requests and time-varying communication conditions, the problem is further formulated as a semi-Markov process and two reinforcement learning methods: Q-learning based method and deep reinforcement learning (DRL) method, are proposed to obtain the optimal policies of computation offloading and resource allocation. Finally, we analyze the effectiveness of the proposed scheme in the vehicular edge computing network by giving numerical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
今后应助淡定香氛采纳,获得10
2秒前
研友_X894JZ完成签到 ,获得积分10
2秒前
小小牛发布了新的文献求助10
2秒前
完美世界应助乐观的颦采纳,获得30
2秒前
谦让的雅青完成签到 ,获得积分10
2秒前
3秒前
linktheboy完成签到,获得积分10
3秒前
oceanao应助Djdidn采纳,获得10
4秒前
温眸完成签到,获得积分10
4秒前
5秒前
炙热冰夏发布了新的文献求助10
7秒前
科研叶完成签到,获得积分10
8秒前
晞尘完成签到,获得积分10
8秒前
jojo665完成签到 ,获得积分10
8秒前
李健的小迷弟应助TTD采纳,获得10
9秒前
维尼完成签到 ,获得积分10
10秒前
汉堡包应助leeeeee采纳,获得10
10秒前
11秒前
12秒前
隐形曼青应助阔阔采纳,获得10
12秒前
温眸发布了新的文献求助30
12秒前
陈拾关注了科研通微信公众号
13秒前
13秒前
14秒前
我是老大应助Naomi-yu采纳,获得10
14秒前
Taylor完成签到,获得积分0
16秒前
邾佳发布了新的文献求助10
16秒前
17秒前
zhan20200503发布了新的文献求助10
17秒前
17秒前
stephy发布了新的文献求助20
19秒前
深情安青应助xlx采纳,获得20
19秒前
迷人素发布了新的文献求助10
20秒前
时尚铁身完成签到 ,获得积分10
20秒前
20秒前
shawn发布了新的文献求助10
22秒前
22秒前
xiaozhou发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164130
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906891
捐赠科研通 2474467
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631841
版权声明 602228