ANN approach for estimation of cow weight depending on photogrammetric body dimensions

摄影测量学 人工神经网络 人工智能 公制(单位) 维数(图论) 计算机科学 预处理器 相关系数 软件 模式识别(心理学) 计算机视觉 数学 机器学习 工程类 程序设计语言 纯数学 运营管理
作者
Şakir Taşdemir,İlker Ali Özkan
出处
期刊:International journal of engineering and geosciences [International Journal of Engineering and Geoscience]
卷期号:4 (1): 36-44 被引量:21
标识
DOI:10.26833/ijeg.427531
摘要

Computer technology and software are widely used in every multi-discipline field. Geomatics engineering can be seen as a pioneer of these disciplines especially in photogrammetry and image processing. Photogrammetry is a method where geometric parameters of objects on digitally captured images are determined and make measurements on them. Capturing the digital images and photogrammetric processing include several fully defined stages, which allows to generate three-dimension or two-dimension digital models of the body as an end product. The aim of this study is to predict Holstein cows’ live weight via artificial neural network whose body dimensions were determined with photogrammetry method. The body dimensions to be used in this study are obtained metric from analysis of cows’ images captured by synchronized three-dimension camera environment from different aspects. Wither height, hip height, body length, hip width of cows determined with photogrammetry. Artificial neural network prediction model was developed by using these body measurements. Dataset is divided into two after preprocessing as training and testing dataset. Different structured artificial neural network models are generated and the artificial neural network model which has the best performance is determined. Then with this artificial neural network model live weight of animals is estimated by using measurements obtained from images. After comparison of estimated live weights and weights obtained from scale, correlation coefficient is found (R=0.995). The statistical analysis shows that both groups are meaningful and artificial neural network can be used in live weight prediction safely.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大鹤完成签到,获得积分20
1秒前
无限的毛豆完成签到,获得积分10
1秒前
1秒前
顾矜应助海潮采纳,获得10
2秒前
4秒前
5秒前
mmm发布了新的文献求助10
5秒前
笨笨的颜演完成签到,获得积分10
8秒前
8秒前
在水一方应助三石采纳,获得10
8秒前
划水发布了新的文献求助10
10秒前
Jayden完成签到 ,获得积分10
11秒前
冷酷的凌萱完成签到,获得积分20
11秒前
11秒前
搜集达人应助Meron采纳,获得10
12秒前
zxy发布了新的文献求助10
12秒前
12秒前
16秒前
16秒前
阿鹏发布了新的文献求助10
16秒前
18秒前
19秒前
AprilLeung完成签到 ,获得积分10
19秒前
LIN发布了新的文献求助10
19秒前
ppsparkling完成签到,获得积分10
20秒前
囧囧给木木啊的求助进行了留言
21秒前
搜集达人应助乔心采纳,获得10
21秒前
dd完成签到,获得积分10
21秒前
上官若男应助窦某采纳,获得10
21秒前
22秒前
22秒前
和谐断天完成签到,获得积分20
22秒前
Meron发布了新的文献求助10
25秒前
Neil发布了新的文献求助10
25秒前
坚定的芷珊完成签到,获得积分10
25秒前
sy发布了新的文献求助10
26秒前
bkagyin应助眯眯眼的平灵采纳,获得10
26秒前
发个46有完成签到,获得积分10
27秒前
科研通AI2S应助冷静新烟采纳,获得10
28秒前
科研通AI2S应助KASTTTTTT采纳,获得10
30秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919