Motion correction of respiratory-gated PET images using deep learning based image registration framework

人工智能 计算机科学 计算机视觉 图像配准 迭代重建 图像质量 运动估计 残余物 模式识别(心理学) 图像(数学) 算法
作者
Tiantian Li,Mengxi Zhang,Wenyuan Qi,Evren Asma,Jinyi Qi
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (15): 155003-155003 被引量:44
标识
DOI:10.1088/1361-6560/ab8688
摘要

Artifacts caused by patient breathing and movement during PET data acquisition affect image quality. Respiratory gating is commonly used to gate the list-mode PET data into multiple bins over a respiratory cycle. Non-rigid registration of respiratory-gated PET images can reduce motion artifacts and preserve count statistics, but it is time consuming. In this work, we propose an unsupervised non-rigid image registration framework using deep learning for motion correction. Our network uses a differentiable spatial transformer layer to warp the moving image to the fixed image and uses a stacked structure for deformation field refinement. Estimated deformation fields were incorporated into an iterative image reconstruction algorithm to perform motion compensated PET image reconstruction. We validated the proposed method using simulation and clinical data and implemented an iterative image registration approach for comparison. Motion compensated reconstructions were compared with ungated images. Our simulation study showed that the motion compensated methods can generate images with sharp boundaries and reveal more details in the heart region compared with the ungated image. The resulting normalized root mean square error (NRMS) was 24.3 ± 1.7% for the deep learning based motion correction, 31.1 ± 1.4% for the iterative registration based motion correction, and 41.9 ± 2.0% for ungated reconstruction. The proposed deep learning based motion correction reduced the bias compared with the ungated image without increasing the noise level and outperformed the iterative registration based method. In the real data study, both motion compensated images provided higher lesion contrast and sharper liver boundaries than the ungated image and had lower noise than the reference gate image. The contrast of the proposed method based on the deep neural network was higher than the ungated image and iterative registration method at any matched noise level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ykveu完成签到,获得积分10
1秒前
wang发布了新的文献求助30
1秒前
2秒前
4秒前
6秒前
傲娇的凡旋应助张凤采纳,获得10
7秒前
CodeCraft应助牛轰轰采纳,获得10
7秒前
义气的凡灵完成签到,获得积分10
8秒前
大气依萱完成签到 ,获得积分10
9秒前
梓慕完成签到 ,获得积分10
9秒前
9秒前
ding应助gangan采纳,获得10
11秒前
小彭完成签到,获得积分10
11秒前
TT发布了新的文献求助10
11秒前
12秒前
快乐雅柏发布了新的文献求助10
13秒前
英勇的碧完成签到,获得积分10
13秒前
梓慕关注了科研通微信公众号
13秒前
大个应助凡雪采纳,获得10
15秒前
meteorabob发布了新的文献求助10
16秒前
17秒前
盼盼发布了新的文献求助10
17秒前
包容汉堡完成签到 ,获得积分10
18秒前
手可摘星陈同学完成签到,获得积分10
19秒前
NexusExplorer应助快乐雅柏采纳,获得10
19秒前
Yilion完成签到,获得积分10
19秒前
小唐要加油完成签到,获得积分10
20秒前
小何发布了新的文献求助10
21秒前
meteorabob完成签到,获得积分10
22秒前
桐拾叁关注了科研通微信公众号
22秒前
23秒前
ceeray23应助海洋饼干42采纳,获得10
24秒前
领导范儿应助yulong采纳,获得10
27秒前
28秒前
30秒前
杳鸢应助blooming boy采纳,获得10
30秒前
30秒前
SciGPT应助lxsll采纳,获得10
30秒前
31秒前
拾春完成签到,获得积分10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443772
求助须知:如何正确求助?哪些是违规求助? 3039907
关于积分的说明 8978775
捐赠科研通 2728422
什么是DOI,文献DOI怎么找? 1496514
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213