Switching on electrocatalytic activity in solid oxide cells

电极 电解质 材料科学 电解 氧化物 氧化剂 纳米技术 电解水 阴极 化学工程 化学 冶金 工程类 物理化学 有机化学
作者
Jae‐ha Myung,Dragos Neagu,David Miller,John T. S. Irvine
出处
期刊:Nature [Nature Portfolio]
卷期号:537 (7621): 528-531 被引量:495
标识
DOI:10.1038/nature19090
摘要

A new way of activating the electrodes in solid oxide cells involves applying an electrical potential to trigger the exsolution of metal catalysts to the electrode surface; the success of this technique raises the possibility of regenerating the electrodes during operation. Incorporating nanostructured electrodes into solid oxide fuel cells improves performance by increasing the active surface area and therefore increasing electrocatalytic activity. However, fabrication of such electrodes by physical or chemical deposition can be complex. Redox exsolution of nanoparticles from a parent perovskite was shown recently to be a viable means of producing electrodes with enhanced stability. Here, John Irvine and colleagues demonstrate that similar exsolution can be achieved by simply poling the cell for a few seconds, rather than the lengthy redox processes previously used. The resulting cells are highly stable in fuel and electrolysis modes, showing that high-performing electrodes can be fabricated quickly and easily in situ. Solid oxide cells (SOCs) can operate with high efficiency in two ways—as fuel cells, oxidizing a fuel to produce electricity, and as electrolysis cells, electrolysing water to produce hydrogen and oxygen gases. Ideally, SOCs should perform well, be durable and be inexpensive, but there are often competitive tensions, meaning that, for example, performance is achieved at the expense of durability. SOCs consist of porous electrodes—the fuel and air electrodes—separated by a dense electrolyte. In terms of the electrodes, the greatest challenge is to deliver high, long-lasting electrocatalytic activity while ensuring cost- and time-efficient manufacture1. This has typically been achieved through lengthy and intricate ex situ procedures. These often require dedicated precursors and equipment1,2,3; moreover, although the degradation of such electrodes associated with their reversible operation can be mitigated4, they are susceptible to many other forms of degradation5. An alternative is to grow appropriate electrode nanoarchitectures under operationally relevant conditions, for example, via redox exsolution6,7,8,9,10. Here we describe the growth of a finely dispersed array of anchored metal nanoparticles on an oxide electrode through electrochemical poling of a SOC at 2 volts for a few seconds. These electrode structures perform well as both fuel cells and electrolysis cells (for example, at 900 °C they deliver 2 watts per square centimetre of power in humidified hydrogen gas, and a current of 2.75 amps per square centimetre at 1.3 volts in 50% water/nitrogen gas). The nanostructures and corresponding electrochemical activity do not degrade in 150 hours of testing. These results not only prove that in operando methods can yield emergent nanomaterials, which in turn deliver exceptional performance, but also offer proof of concept that electrolysis and fuel cells can be unified in a single, high-performance, versatile and easily manufactured device. This opens up the possibility of simple, almost instantaneous production of highly active nanostructures for reinvigorating SOCs during operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳里发布了新的文献求助10
1秒前
酸奶花生完成签到 ,获得积分10
1秒前
CT发布了新的文献求助10
2秒前
NexusExplorer应助11111采纳,获得10
3秒前
123完成签到,获得积分10
3秒前
7秒前
酷波er应助冷艳的姿采纳,获得10
8秒前
8秒前
小蘑菇应助缥缈冷安采纳,获得10
8秒前
ccygpp199发布了新的文献求助10
8秒前
NexusExplorer应助佳里采纳,获得10
9秒前
淡淡的向雁完成签到,获得积分10
9秒前
10秒前
10秒前
Jasper应助LJJ采纳,获得10
12秒前
小啦啦3082发布了新的文献求助10
12秒前
12秒前
13秒前
甜甜的悲完成签到,获得积分20
13秒前
今后应助wbh采纳,获得10
13秒前
14秒前
妖妖灵完成签到,获得积分20
14秒前
加油干发布了新的文献求助10
14秒前
彭于晏应助xuan采纳,获得10
14秒前
甜甜的悲发布了新的文献求助10
15秒前
gwenjing发布了新的文献求助10
16秒前
wsj发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
张金蝶发布了新的文献求助10
18秒前
jinzhen发布了新的文献求助10
18秒前
文献发布了新的文献求助30
19秒前
太牛的GGB完成签到,获得积分20
19秒前
20秒前
穿裤子的云完成签到,获得积分10
21秒前
21秒前
今后应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173