已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Switching on electrocatalytic activity in solid oxide cells

电极 电解质 材料科学 电解 氧化物 氧化剂 纳米技术 电解水 阴极 化学工程 化学 冶金 有机化学 物理化学 工程类
作者
Jae‐ha Myung,Dragos Neagu,David Miller,John T. S. Irvine
出处
期刊:Nature [Springer Nature]
卷期号:537 (7621): 528-531 被引量:478
标识
DOI:10.1038/nature19090
摘要

A new way of activating the electrodes in solid oxide cells involves applying an electrical potential to trigger the exsolution of metal catalysts to the electrode surface; the success of this technique raises the possibility of regenerating the electrodes during operation. Incorporating nanostructured electrodes into solid oxide fuel cells improves performance by increasing the active surface area and therefore increasing electrocatalytic activity. However, fabrication of such electrodes by physical or chemical deposition can be complex. Redox exsolution of nanoparticles from a parent perovskite was shown recently to be a viable means of producing electrodes with enhanced stability. Here, John Irvine and colleagues demonstrate that similar exsolution can be achieved by simply poling the cell for a few seconds, rather than the lengthy redox processes previously used. The resulting cells are highly stable in fuel and electrolysis modes, showing that high-performing electrodes can be fabricated quickly and easily in situ. Solid oxide cells (SOCs) can operate with high efficiency in two ways—as fuel cells, oxidizing a fuel to produce electricity, and as electrolysis cells, electrolysing water to produce hydrogen and oxygen gases. Ideally, SOCs should perform well, be durable and be inexpensive, but there are often competitive tensions, meaning that, for example, performance is achieved at the expense of durability. SOCs consist of porous electrodes—the fuel and air electrodes—separated by a dense electrolyte. In terms of the electrodes, the greatest challenge is to deliver high, long-lasting electrocatalytic activity while ensuring cost- and time-efficient manufacture1. This has typically been achieved through lengthy and intricate ex situ procedures. These often require dedicated precursors and equipment1,2,3; moreover, although the degradation of such electrodes associated with their reversible operation can be mitigated4, they are susceptible to many other forms of degradation5. An alternative is to grow appropriate electrode nanoarchitectures under operationally relevant conditions, for example, via redox exsolution6,7,8,9,10. Here we describe the growth of a finely dispersed array of anchored metal nanoparticles on an oxide electrode through electrochemical poling of a SOC at 2 volts for a few seconds. These electrode structures perform well as both fuel cells and electrolysis cells (for example, at 900 °C they deliver 2 watts per square centimetre of power in humidified hydrogen gas, and a current of 2.75 amps per square centimetre at 1.3 volts in 50% water/nitrogen gas). The nanostructures and corresponding electrochemical activity do not degrade in 150 hours of testing. These results not only prove that in operando methods can yield emergent nanomaterials, which in turn deliver exceptional performance, but also offer proof of concept that electrolysis and fuel cells can be unified in a single, high-performance, versatile and easily manufactured device. This opens up the possibility of simple, almost instantaneous production of highly active nanostructures for reinvigorating SOCs during operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
严明完成签到,获得积分10
5秒前
6秒前
xiaoliu123关注了科研通微信公众号
7秒前
闹闹发布了新的文献求助10
7秒前
完美世界应助彼呦彼呦采纳,获得10
9秒前
Res_M完成签到,获得积分10
10秒前
12秒前
2220完成签到 ,获得积分10
13秒前
cocolu应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
毛豆应助科研通管家采纳,获得10
13秒前
13秒前
Yifan2024应助科研通管家采纳,获得50
13秒前
毛豆应助科研通管家采纳,获得10
13秒前
今后应助无心的访蕊采纳,获得10
13秒前
毛豆应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
Yifan2024应助科研通管家采纳,获得10
14秒前
毛豆应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
bzlsgjdm完成签到 ,获得积分10
14秒前
无花果应助优美的夜柳采纳,获得10
14秒前
子翱完成签到 ,获得积分10
18秒前
shuke完成签到,获得积分10
18秒前
科研冲冲冲完成签到 ,获得积分20
19秒前
朴实映天发布了新的文献求助10
20秒前
jjj完成签到 ,获得积分20
23秒前
闹闹完成签到,获得积分20
23秒前
广东第一深情完成签到,获得积分10
23秒前
许结朱陈完成签到 ,获得积分10
24秒前
xiaolang2004完成签到,获得积分10
24秒前
11128完成签到 ,获得积分10
24秒前
热带蚂蚁完成签到 ,获得积分10
25秒前
怡然远望完成签到 ,获得积分10
25秒前
26秒前
杨青月完成签到,获得积分10
27秒前
gxl完成签到,获得积分10
28秒前
Kkk完成签到 ,获得积分10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459989
求助须知:如何正确求助?哪些是违规求助? 3054340
关于积分的说明 9041428
捐赠科研通 2743531
什么是DOI,文献DOI怎么找? 1504972
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694839