亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Switching on electrocatalytic activity in solid oxide cells

电极 电解质 材料科学 电解 氧化物 氧化剂 纳米技术 电解水 阴极 化学工程 化学 冶金 工程类 物理化学 有机化学
作者
Jae‐ha Myung,Dragos Neagu,David Miller,John T. S. Irvine
出处
期刊:Nature [Springer Nature]
卷期号:537 (7621): 528-531 被引量:536
标识
DOI:10.1038/nature19090
摘要

A new way of activating the electrodes in solid oxide cells involves applying an electrical potential to trigger the exsolution of metal catalysts to the electrode surface; the success of this technique raises the possibility of regenerating the electrodes during operation. Incorporating nanostructured electrodes into solid oxide fuel cells improves performance by increasing the active surface area and therefore increasing electrocatalytic activity. However, fabrication of such electrodes by physical or chemical deposition can be complex. Redox exsolution of nanoparticles from a parent perovskite was shown recently to be a viable means of producing electrodes with enhanced stability. Here, John Irvine and colleagues demonstrate that similar exsolution can be achieved by simply poling the cell for a few seconds, rather than the lengthy redox processes previously used. The resulting cells are highly stable in fuel and electrolysis modes, showing that high-performing electrodes can be fabricated quickly and easily in situ. Solid oxide cells (SOCs) can operate with high efficiency in two ways—as fuel cells, oxidizing a fuel to produce electricity, and as electrolysis cells, electrolysing water to produce hydrogen and oxygen gases. Ideally, SOCs should perform well, be durable and be inexpensive, but there are often competitive tensions, meaning that, for example, performance is achieved at the expense of durability. SOCs consist of porous electrodes—the fuel and air electrodes—separated by a dense electrolyte. In terms of the electrodes, the greatest challenge is to deliver high, long-lasting electrocatalytic activity while ensuring cost- and time-efficient manufacture1. This has typically been achieved through lengthy and intricate ex situ procedures. These often require dedicated precursors and equipment1,2,3; moreover, although the degradation of such electrodes associated with their reversible operation can be mitigated4, they are susceptible to many other forms of degradation5. An alternative is to grow appropriate electrode nanoarchitectures under operationally relevant conditions, for example, via redox exsolution6,7,8,9,10. Here we describe the growth of a finely dispersed array of anchored metal nanoparticles on an oxide electrode through electrochemical poling of a SOC at 2 volts for a few seconds. These electrode structures perform well as both fuel cells and electrolysis cells (for example, at 900 °C they deliver 2 watts per square centimetre of power in humidified hydrogen gas, and a current of 2.75 amps per square centimetre at 1.3 volts in 50% water/nitrogen gas). The nanostructures and corresponding electrochemical activity do not degrade in 150 hours of testing. These results not only prove that in operando methods can yield emergent nanomaterials, which in turn deliver exceptional performance, but also offer proof of concept that electrolysis and fuel cells can be unified in a single, high-performance, versatile and easily manufactured device. This opens up the possibility of simple, almost instantaneous production of highly active nanostructures for reinvigorating SOCs during operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江小姜发布了新的文献求助10
38秒前
江小姜完成签到,获得积分20
1分钟前
貔貅完成签到 ,获得积分10
1分钟前
赘婿应助杜琦采纳,获得10
1分钟前
1分钟前
1分钟前
懒洋洋完成签到,获得积分10
1分钟前
杜琦发布了新的文献求助10
1分钟前
懒洋洋发布了新的文献求助10
1分钟前
大模型应助JJBOND采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
隐形曼青应助香菜张采纳,获得10
1分钟前
曹国庆完成签到 ,获得积分10
3分钟前
和谐的沛春完成签到,获得积分10
3分钟前
今天你学习了吗完成签到 ,获得积分10
3分钟前
我是老大应助科研通管家采纳,获得30
3分钟前
CodeCraft应助科研通管家采纳,获得50
3分钟前
gcr完成签到 ,获得积分10
3分钟前
mxh完成签到,获得积分10
4分钟前
fhzy完成签到,获得积分10
5分钟前
慕青应助Reginaaaaa采纳,获得10
5分钟前
andrele应助科研通管家采纳,获得10
5分钟前
andrele应助科研通管家采纳,获得10
5分钟前
跳不起来的大神完成签到 ,获得积分10
6分钟前
无情的聋五完成签到 ,获得积分10
6分钟前
搜集达人应助眨眼采纳,获得10
6分钟前
6分钟前
Linson完成签到,获得积分10
6分钟前
眨眼发布了新的文献求助10
6分钟前
Omni完成签到,获得积分10
7分钟前
和风完成签到 ,获得积分10
7分钟前
andrele应助科研通管家采纳,获得10
7分钟前
andrele应助科研通管家采纳,获得10
7分钟前
andrele应助科研通管家采纳,获得10
7分钟前
8分钟前
香菜张发布了新的文献求助10
8分钟前
cwy完成签到 ,获得积分10
8分钟前
酷酷的安柏完成签到 ,获得积分10
8分钟前
IShowSpeed完成签到,获得积分10
8分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845317
求助须知:如何正确求助?哪些是违规求助? 6201343
关于积分的说明 15616359
捐赠科研通 4962137
什么是DOI,文献DOI怎么找? 2675311
邀请新用户注册赠送积分活动 1620047
关于科研通互助平台的介绍 1575346