Switching on electrocatalytic activity in solid oxide cells

电极 电解质 材料科学 电解 氧化物 氧化剂 纳米技术 电解水 阴极 化学工程 化学 冶金 工程类 物理化学 有机化学
作者
Jae‐ha Myung,Dragos Neagu,David Miller,John T. S. Irvine
出处
期刊:Nature [Nature Portfolio]
卷期号:537 (7621): 528-531 被引量:495
标识
DOI:10.1038/nature19090
摘要

A new way of activating the electrodes in solid oxide cells involves applying an electrical potential to trigger the exsolution of metal catalysts to the electrode surface; the success of this technique raises the possibility of regenerating the electrodes during operation. Incorporating nanostructured electrodes into solid oxide fuel cells improves performance by increasing the active surface area and therefore increasing electrocatalytic activity. However, fabrication of such electrodes by physical or chemical deposition can be complex. Redox exsolution of nanoparticles from a parent perovskite was shown recently to be a viable means of producing electrodes with enhanced stability. Here, John Irvine and colleagues demonstrate that similar exsolution can be achieved by simply poling the cell for a few seconds, rather than the lengthy redox processes previously used. The resulting cells are highly stable in fuel and electrolysis modes, showing that high-performing electrodes can be fabricated quickly and easily in situ. Solid oxide cells (SOCs) can operate with high efficiency in two ways—as fuel cells, oxidizing a fuel to produce electricity, and as electrolysis cells, electrolysing water to produce hydrogen and oxygen gases. Ideally, SOCs should perform well, be durable and be inexpensive, but there are often competitive tensions, meaning that, for example, performance is achieved at the expense of durability. SOCs consist of porous electrodes—the fuel and air electrodes—separated by a dense electrolyte. In terms of the electrodes, the greatest challenge is to deliver high, long-lasting electrocatalytic activity while ensuring cost- and time-efficient manufacture1. This has typically been achieved through lengthy and intricate ex situ procedures. These often require dedicated precursors and equipment1,2,3; moreover, although the degradation of such electrodes associated with their reversible operation can be mitigated4, they are susceptible to many other forms of degradation5. An alternative is to grow appropriate electrode nanoarchitectures under operationally relevant conditions, for example, via redox exsolution6,7,8,9,10. Here we describe the growth of a finely dispersed array of anchored metal nanoparticles on an oxide electrode through electrochemical poling of a SOC at 2 volts for a few seconds. These electrode structures perform well as both fuel cells and electrolysis cells (for example, at 900 °C they deliver 2 watts per square centimetre of power in humidified hydrogen gas, and a current of 2.75 amps per square centimetre at 1.3 volts in 50% water/nitrogen gas). The nanostructures and corresponding electrochemical activity do not degrade in 150 hours of testing. These results not only prove that in operando methods can yield emergent nanomaterials, which in turn deliver exceptional performance, but also offer proof of concept that electrolysis and fuel cells can be unified in a single, high-performance, versatile and easily manufactured device. This opens up the possibility of simple, almost instantaneous production of highly active nanostructures for reinvigorating SOCs during operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cis2014完成签到,获得积分10
1秒前
独特的大有完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
4秒前
xingyi完成签到,获得积分10
6秒前
7秒前
舒心的秋荷完成签到 ,获得积分10
10秒前
zz123发布了新的文献求助10
11秒前
liaomr完成签到 ,获得积分10
11秒前
粗犷的灵松完成签到,获得积分10
12秒前
吃小孩的妖怪完成签到 ,获得积分10
12秒前
ncuwzq完成签到,获得积分10
14秒前
yshj完成签到 ,获得积分10
15秒前
17秒前
净禅完成签到 ,获得积分10
19秒前
21秒前
迷人的寒风完成签到,获得积分10
22秒前
22秒前
water应助科研通管家采纳,获得10
23秒前
Lucas应助HHHAN采纳,获得10
25秒前
无情修杰完成签到 ,获得积分10
26秒前
小柒完成签到 ,获得积分10
28秒前
聪慧芷巧发布了新的文献求助10
29秒前
30秒前
34秒前
蓝意完成签到,获得积分0
35秒前
xiaohongmao完成签到,获得积分10
40秒前
43秒前
qweerrtt完成签到,获得积分10
50秒前
50秒前
与共发布了新的文献求助10
51秒前
carly完成签到 ,获得积分10
52秒前
颢懿完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
56秒前
58秒前
ljc完成签到 ,获得积分10
59秒前
Java完成签到,获得积分10
1分钟前
1分钟前
鲤鱼安青完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022