已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Switching on electrocatalytic activity in solid oxide cells

电极 电解质 材料科学 电解 氧化物 氧化剂 纳米技术 电解水 阴极 化学工程 化学 冶金 有机化学 物理化学 工程类
作者
Jae‐ha Myung,Dragos Neagu,David Miller,John T. S. Irvine
出处
期刊:Nature [Nature Portfolio]
卷期号:537 (7621): 528-531 被引量:521
标识
DOI:10.1038/nature19090
摘要

A new way of activating the electrodes in solid oxide cells involves applying an electrical potential to trigger the exsolution of metal catalysts to the electrode surface; the success of this technique raises the possibility of regenerating the electrodes during operation. Incorporating nanostructured electrodes into solid oxide fuel cells improves performance by increasing the active surface area and therefore increasing electrocatalytic activity. However, fabrication of such electrodes by physical or chemical deposition can be complex. Redox exsolution of nanoparticles from a parent perovskite was shown recently to be a viable means of producing electrodes with enhanced stability. Here, John Irvine and colleagues demonstrate that similar exsolution can be achieved by simply poling the cell for a few seconds, rather than the lengthy redox processes previously used. The resulting cells are highly stable in fuel and electrolysis modes, showing that high-performing electrodes can be fabricated quickly and easily in situ. Solid oxide cells (SOCs) can operate with high efficiency in two ways—as fuel cells, oxidizing a fuel to produce electricity, and as electrolysis cells, electrolysing water to produce hydrogen and oxygen gases. Ideally, SOCs should perform well, be durable and be inexpensive, but there are often competitive tensions, meaning that, for example, performance is achieved at the expense of durability. SOCs consist of porous electrodes—the fuel and air electrodes—separated by a dense electrolyte. In terms of the electrodes, the greatest challenge is to deliver high, long-lasting electrocatalytic activity while ensuring cost- and time-efficient manufacture1. This has typically been achieved through lengthy and intricate ex situ procedures. These often require dedicated precursors and equipment1,2,3; moreover, although the degradation of such electrodes associated with their reversible operation can be mitigated4, they are susceptible to many other forms of degradation5. An alternative is to grow appropriate electrode nanoarchitectures under operationally relevant conditions, for example, via redox exsolution6,7,8,9,10. Here we describe the growth of a finely dispersed array of anchored metal nanoparticles on an oxide electrode through electrochemical poling of a SOC at 2 volts for a few seconds. These electrode structures perform well as both fuel cells and electrolysis cells (for example, at 900 °C they deliver 2 watts per square centimetre of power in humidified hydrogen gas, and a current of 2.75 amps per square centimetre at 1.3 volts in 50% water/nitrogen gas). The nanostructures and corresponding electrochemical activity do not degrade in 150 hours of testing. These results not only prove that in operando methods can yield emergent nanomaterials, which in turn deliver exceptional performance, but also offer proof of concept that electrolysis and fuel cells can be unified in a single, high-performance, versatile and easily manufactured device. This opens up the possibility of simple, almost instantaneous production of highly active nanostructures for reinvigorating SOCs during operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高磊一航完成签到,获得积分10
刚刚
科研通AI5应助蜜獾采纳,获得10
2秒前
可爱的函函应助无风采纳,获得10
2秒前
福娃哇完成签到 ,获得积分10
4秒前
5秒前
zhangyimg完成签到,获得积分10
6秒前
Ak完成签到,获得积分0
6秒前
lmy应助科研通管家采纳,获得50
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
eric888应助科研通管家采纳,获得100
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
微笑的手机完成签到 ,获得积分10
8秒前
搜集达人应助一彤展翅采纳,获得10
8秒前
9秒前
大圆土豆完成签到 ,获得积分10
10秒前
缺口口完成签到 ,获得积分10
10秒前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
11秒前
自由的无色完成签到 ,获得积分10
11秒前
木卫二完成签到 ,获得积分10
12秒前
神内打工人完成签到 ,获得积分10
12秒前
zhangyimg发布了新的文献求助10
12秒前
斯文的苡完成签到,获得积分10
12秒前
小徐完成签到 ,获得积分10
13秒前
雨柏完成签到 ,获得积分10
13秒前
14秒前
xiao完成签到 ,获得积分10
14秒前
Uki完成签到 ,获得积分10
14秒前
yaya发布了新的文献求助30
15秒前
科三考了7次完成签到,获得积分10
15秒前
jokerhoney完成签到,获得积分10
16秒前
小状元完成签到 ,获得积分10
18秒前
19秒前
橙子是不是完成签到,获得积分10
20秒前
化工渣渣完成签到,获得积分10
20秒前
拜了个拜完成签到,获得积分10
21秒前
钮祜禄萱完成签到 ,获得积分10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209672
求助须知:如何正确求助?哪些是违规求助? 4386826
关于积分的说明 13661758
捐赠科研通 4246171
什么是DOI,文献DOI怎么找? 2329675
邀请新用户注册赠送积分活动 1327422
关于科研通互助平台的介绍 1279784