指数
山口定理
临界指数
正多边形
数学物理
组合数学
数学
薛定谔猫
物理
数学分析
量子力学
非线性系统
几何学
缩放比例
语言学
哲学
作者
Miaomiao Li,Chun-Lei Tang
出处
期刊:Communications on Pure and Applied Analysis
[American Institute of Mathematical Sciences]
日期:2017-01-01
卷期号:16 (5): 1587-1602
被引量:9
摘要
In this paper, we study the existence of multiple positive solutions of the following Schrödinger-Poisson system with critical exponent $\begin{equation*}\begin{cases}-Δ u-l(x)φ u=λ h(x)|u|^{q-2}u+|u|^{4}u,\ \text{in}\ \mathbb{R}^{3}, \\-Δφ=l(x)u^{2},\ \text{in}\ \mathbb{R}^{3},\end{cases}\end{equation*}$ where $1 < q < 2 $ and $λ>0 $. Under some appropriate conditions on $ l$ and $h $, we show that there exists $λ^{*}>0 $ such that the above problem has at least two positive solutions for each $λ∈(0,λ^{*}) $ by using the Mountain Pass Theorem and Ekeland's Variational Principle.
科研通智能强力驱动
Strongly Powered by AbleSci AI