Opportunities and obstacles for deep learning in biology and medicine

深度学习 可解释性 人工智能 多样性(控制论) 计算机科学 机器学习 数据科学
作者
Travers Ching,Daniel Himmelstein,Brett K. Beaulieu‐Jones,Alexandr A. Kalinin,T. Brian,Gregory P. Way,Enrico Ferrero,Paul‐Michael Agapow,Michael Zietz,Michael M. Hoffman,Wei Xie,Gail Rosen,Benjamin J. Lengerich,Johnny Israeli,Jack Lanchantin,Stephen Woloszynek,Anne E. Carpenter,Avanti Shrikumar,Jinbo Xu,Evan M. Cofer,Christopher A. Lavender,Srinivas C. Turaga,Amr M. Alexandari,Zhiyong Lu,David J. Harris,David DeCaprio,Yanjun Qi,Anshul Kundaje,Yifan Peng,Laura K. Wiley,Marwin Segler,Simina M. Boca,S. Joshua Swamidass,Austin Huang,Anthony Gitter,Casey S. Greene
标识
DOI:10.1101/142760
摘要

Abstract Deep learning, which describes a class of machine learning algorithms, has recently showed impressive results across a variety of domains. Biology and medicine are data rich, but the data are complex and often ill-understood. Problems of this nature may be particularly well-suited to deep learning techniques. We examine applications of deep learning to a variety of biomedical problems—patient classification, fundamental biological processes, and treatment of patients—and discuss whether deep learning will transform these tasks or if the biomedical sphere poses unique challenges. We find that deep learning has yet to revolutionize or definitively resolve any of these problems, but promising advances have been made on the prior state of the art. Even when improvement over a previous baseline has been modest, we have seen signs that deep learning methods may speed or aid human investigation. More work is needed to address concerns related to interpretability and how to best model each problem. Furthermore, the limited amount of labeled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning powering changes at both bench and bedside with the potential to transform several areas of biology and medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水晶李发布了新的文献求助20
1秒前
朱颜发布了新的文献求助10
2秒前
火星上仰完成签到,获得积分10
5秒前
5秒前
ziwei发布了新的文献求助10
6秒前
Qintt完成签到 ,获得积分10
9秒前
11秒前
wsh发布了新的文献求助10
11秒前
脑洞疼应助火星上向珊采纳,获得10
13秒前
13秒前
6657完成签到 ,获得积分10
14秒前
爱吃麻辣烫应助几时有采纳,获得10
14秒前
treasure发布了新的文献求助10
15秒前
hhhhhha完成签到,获得积分10
17秒前
TTTHANKS完成签到,获得积分10
17秒前
17秒前
1257应助lilili采纳,获得10
18秒前
Akim应助wsh采纳,获得10
19秒前
20秒前
慕青应助酷酷的起眸采纳,获得10
20秒前
可靠的书桃应助ddffgz采纳,获得10
20秒前
treasure完成签到,获得积分10
20秒前
21秒前
23秒前
雪山发布了新的文献求助10
25秒前
CCC发布了新的文献求助10
26秒前
28秒前
30秒前
Gilana应助Apple采纳,获得20
30秒前
万能图书馆应助lin采纳,获得30
30秒前
30秒前
小二郎应助季生采纳,获得10
31秒前
鲨瓦迪卡完成签到,获得积分10
32秒前
32秒前
yyy完成签到,获得积分10
33秒前
Alicia发布了新的文献求助10
34秒前
34秒前
于归完成签到 ,获得积分10
35秒前
35秒前
YuuLoon应助LLL采纳,获得10
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152014
求助须知:如何正确求助?哪些是违规求助? 2803297
关于积分的说明 7853218
捐赠科研通 2460777
什么是DOI,文献DOI怎么找? 1310024
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601765