Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction

催化作用 化学 质子交换膜燃料电池 氧化物 氧还原反应 电子转移 阴极 纳米结构 腐蚀 化学工程 氧化还原 过渡金属 燃料电池 金属 氧气 纳米技术 无机化学 电化学 电极 物理化学 材料科学 有机化学 工程类 生物化学
作者
Van Thi Thanh Ho,Chun‐Jern Pan,John Rick,Wei‐Nien Su,Bing‐Joe Hwang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:133 (30): 11716-11724 被引量:386
标识
DOI:10.1021/ja2039562
摘要

The slow rate of the oxygen reduction reaction (ORR) and the instability of Pt-based catalysts are two of the most important issues that must be solved in order to make proton exchange membrane fuel cells (PEMFCs) a reality. Additionally, the serious carbon corrosion on the cathode side is a critical problem with respect to the durability of catalyst that limits its wide application. Here, we present a new approach by exploring robust noncarbon Ti0.7Mo0.3O2 used as a novel functionalized cocatalytic support for Pt. This approach is based on the novel nanostructure Ti0.7Mo0.3O2 support with "electronic transfer mechanism" from Ti0.7Mo0.3O2 to Pt that can modify the surface electronic structure of Pt, owing to a shift in the d-band center of the surface Pt atoms. Furthermore, another benefit of Ti0.7Mo0.3O2 is the extremely high stability of Pt/Ti0.7Mo0.3O2 during potential cycling, which is attributable to the strong metal/support interaction (SMSI) between Pt and Ti0.7Mo0.3O2. This also enhances the inherent structural and chemical stability and the corrosion resistance of the TiO2-based oxide in acidic and oxidative environments. We also demonstrate that the ORR current densities generated using cocatalytic Pt/Ti0.7Mo0.3O2 are respectively ∼7- and 2.6-fold higher than those of commercial Pt/C and PtCo/C catalysts with the same Pt loading. This new approach opens a reliable path to the discovery advanced concept in designing new catalysts that can replace the traditional catalytic structure and motivate further research in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助拉长的念珍采纳,获得10
1秒前
小鸭子应助谁来帮帮朕采纳,获得10
1秒前
11完成签到,获得积分10
2秒前
2秒前
forest发布了新的文献求助10
2秒前
4秒前
宜醉宜游宜睡应助喬木采纳,获得10
4秒前
保持呼吸完成签到,获得积分20
4秒前
拼搏听寒完成签到,获得积分10
5秒前
思思发布了新的文献求助10
5秒前
_u_ii应助赣南橙采纳,获得10
7秒前
彭于晏应助卡卡采纳,获得30
7秒前
元谷雪发布了新的文献求助10
7秒前
7秒前
个性的振家完成签到,获得积分10
7秒前
Hello应助跳跃富采纳,获得10
7秒前
万能图书馆应助风筝与亭采纳,获得10
8秒前
摩卡发布了新的文献求助10
9秒前
10秒前
forest完成签到,获得积分10
10秒前
cocolu应助玥来玥好采纳,获得10
10秒前
领导范儿应助清晨采纳,获得10
11秒前
qikuo完成签到,获得积分10
11秒前
Lydia发布了新的文献求助10
13秒前
asd发布了新的文献求助30
13秒前
拼搏听寒发布了新的文献求助10
13秒前
17秒前
18秒前
思思完成签到 ,获得积分10
19秒前
20秒前
李健应助雨醉东风采纳,获得10
21秒前
21秒前
猴王完成签到,获得积分10
22秒前
22秒前
斯文败类应助单纯的思松采纳,获得10
22秒前
lpydz完成签到,获得积分10
24秒前
siqiqiqi发布了新的文献求助10
25秒前
化工牛马发布了新的文献求助10
26秒前
小鱼爱吃肉应助风雨采纳,获得10
27秒前
情怀应助格兰兔米兔采纳,获得10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312299
求助须知:如何正确求助?哪些是违规求助? 2944955
关于积分的说明 8522182
捐赠科研通 2620750
什么是DOI,文献DOI怎么找? 1433015
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650153