Synthetic microswimmers may someday perform medical and technological tasks, but predicting their motion and dispersion is challenging. Here we show that chemically propelled rods tend to move on a surface along large circles but curiously show stochastic changes in the sign of the orbit curvature. By accounting for fluctuation-driven flipping of slightly curved rods, we obtain analytical predictions for the ensemble behavior in good agreement with our experiments. This shows that minor defects in swimmer shape can yield major long-term effects on macroscopic dispersion.