鉴定(生物学)
先验与后验
计算机科学
转化(遗传学)
人工智能
机器学习
模式识别(心理学)
哲学
生物化学
植物
化学
认识论
生物
基因
作者
М. М. Татур,D. N. Adzinets,М. М. Лукашевич,S. A. Bairak
出处
期刊:Advances in intelligent and soft computing
日期:2010-01-01
卷期号:: 529-536
被引量:3
标识
DOI:10.1007/978-3-642-12433-4_62
摘要
In this paper we propose a generalized model of identification which displays flexible transformation within the framework of generally known paradigms by changing tunings. The application of this model enables to synthesize various classifiers using a priori information about definite applied tasks of identification. So, we describe the approach to the solution of the problem of generation of representative training sequences and correct comparative evaluation of classifiers.
科研通智能强力驱动
Strongly Powered by AbleSci AI