Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies

非同义代换 判别式 外显子组 外显子组测序 生物 人工智能 机器学习 SNP公司 预测能力 计算生物学 计算机科学 突变 遗传学 单核苷酸多态性 基因组 基因 认识论 基因型 哲学
作者
Caixia Dong,Peng Wei,Jian Xiao,Richard A. Gibbs,Eric Boerwinkle,Kai Wang,Xiaoming Liu
出处
期刊:Human Molecular Genetics [Oxford University Press]
卷期号:24 (8): 2125-2137 被引量:1007
标识
DOI:10.1093/hmg/ddu733
摘要

Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing pathogenic mutations from background polymorphisms in whole exome sequencing (WES) studies. Although many deleteriousness prediction methods have been developed, their prediction results are sometimes inconsistent with each other and their relative merits are still unclear in practical applications. To address these issues, we comprehensively evaluated the predictive performance of 18 current deleteriousness-scoring methods, including 11 function prediction scores (PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO and MutPred), 3 conservation scores (GERP++, SiPhy and PhyloP) and 4 ensemble scores (CADD, PON-P, KGGSeq and CONDEL). We found that FATHMM and KGGSeq had the highest discriminative power among independent scores and ensemble scores, respectively. Moreover, to ensure unbiased performance evaluation of these prediction scores, we manually collected three distinct testing datasets, on which no current prediction scores were tuned. In addition, we developed two new ensemble scores that integrate nine independent scores and allele frequency. Our scores achieved the highest discriminative power compared with all the deleteriousness prediction scores tested and showed low false-positive prediction rate for benign yet rare nonsynonymous variants, which demonstrated the value of combining information from multiple orthologous approaches. Finally, to facilitate variant prioritization in WES studies, we have pre-computed our ensemble scores for 87 347 044 possible variants in the whole-exome and made them publicly available through the ANNOVAR software and the dbNSFP database.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助lvqlin666采纳,获得10
刚刚
xushanqi发布了新的文献求助10
刚刚
威武的水之完成签到,获得积分10
2秒前
Pride完成签到 ,获得积分10
3秒前
沉静的半仙完成签到,获得积分10
3秒前
曾经耳机发布了新的文献求助10
4秒前
5秒前
小二郎应助笑点低的初兰采纳,获得10
6秒前
16秒前
yysh1950完成签到,获得积分20
17秒前
情怀应助拜无忧采纳,获得10
18秒前
19秒前
优秀的行云完成签到 ,获得积分10
20秒前
打打应助Michael采纳,获得30
21秒前
21秒前
22秒前
程南完成签到,获得积分10
24秒前
24秒前
24秒前
lvqlin666完成签到,获得积分10
24秒前
25秒前
nhz完成签到 ,获得积分20
25秒前
Science-x发布了新的文献求助10
25秒前
归尘发布了新的文献求助10
26秒前
26秒前
香蕉觅云应助积极问晴采纳,获得10
26秒前
妖妖完成签到 ,获得积分10
29秒前
29秒前
独特秋双发布了新的文献求助10
30秒前
忧郁柠檬发布了新的文献求助10
31秒前
意意发布了新的文献求助10
31秒前
斯文败类应助wmmm采纳,获得10
33秒前
妖妖关注了科研通微信公众号
33秒前
大气龙猫完成签到,获得积分10
34秒前
思源应助cille采纳,获得10
34秒前
34秒前
上官若男应助查理fofo采纳,获得10
39秒前
wang完成签到,获得积分10
39秒前
Jasper应助Jonas采纳,获得10
40秒前
40秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422541
求助须知:如何正确求助?哪些是违规求助? 3022759
关于积分的说明 8902632
捐赠科研通 2710279
什么是DOI,文献DOI怎么找? 1486364
科研通“疑难数据库(出版商)”最低求助积分说明 687038
邀请新用户注册赠送积分活动 682261