木糖
人口
代谢工程
酿酒酵母
生产过剩
化学
微流控
生物化学
生物
生物过程
细胞生物学
发酵
酵母
基因
纳米技术
古生物学
人口学
社会学
材料科学
作者
Benjamin Wang,Adel Ghaderi,Hang Zhou,Jeremy J. Agresti,David A. Weitz,Gerald R. Fink,Gregory Stephanopoulos
摘要
A new microfluidic system makes it easy to identify rare cells that secrete or consume specific molecules Phenotyping single cells based on the products they secrete or consume is a key bottleneck in many biotechnology applications, such as combinatorial metabolic engineering for the overproduction of secreted metabolites. Here we present a flexible high-throughput approach that uses microfluidics to compartmentalize individual cells for growth and analysis in monodisperse nanoliter aqueous droplets surrounded by an immiscible fluorinated oil phase. We use this system to identify xylose-overconsuming Saccharomyces cerevisiae cells from a population containing one such cell per 104 cells and to screen a genomic library to identify multiple copies of the xylose isomerase gene as a genomic change contributing to high xylose consumption, a trait important for lignocellulosic feedstock utilization. We also enriched L-lactate–producing Escherichia coli clones 5,800× from a population containing one L-lactate producer per 104 D-lactate producers. Our approach has broad applications for single-cell analyses, such as in strain selection for the overproduction of fuels, chemicals and pharmaceuticals.
科研通智能强力驱动
Strongly Powered by AbleSci AI