废水
硫黄
环境化学
缺氧水域
流出物
硫代硫酸钠
制浆造纸工业
作者
Jin Qian,Hui Lu,Yanxiang Cui,Li Wei,Rulong Liu,Guanghao Chen
标识
DOI:10.1016/j.watres.2014.11.038
摘要
Abstract Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the S ulfate reduction- A utotrophic denitrification- N itrification I ntegrated (SANI®) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O32− transformation during biological SO42−/SO32− co-reduction coupled with organics removal as well as S2O32− oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O32− may disproportionate to sulfide and sulfate during both biological S2O32− reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3− reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI