Anatomical landmarks for point-matching registration in image-guided neurosurgery

图像配准 计算机科学 匹配(统计) 神经外科 人工智能 点(几何) 计算机视觉 影像引导手术 图像(数学) 点集注册 医学物理学 医学 放射科 数学 几何学 病理
作者
Akram I. Omara,Manning Wang,Yifeng Fan,Zhijian Song
出处
期刊:International Journal of Medical Robotics and Computer Assisted Surgery [Wiley]
卷期号:10 (1): 55-64 被引量:45
标识
DOI:10.1002/rcs.1509
摘要

Accurate patient to image registration is the core for successful image-guided neurosurgery. While skin adhesive markers (SMs) are widely used in point-matching registration, a proper implementation of anatomical landmarks (ALs) may overcome the inconvenience brought by the use of SMs.Using nine ALs, a set of three configurations of different combinations of them is proposed. These configurations are defined according to the required positioning of the patient's head during surgery and the resulting distribution of the expected target registration error (TRE). These configurations were first evaluated by simulation experiment using the data of 20 patients from two hospitals, and then testing the applicability of them in eight real clinical surgeries of neuronavigation.The results of the simulation experiment showed that, by incorporating a fiducial registration error (FRE) of 3.5 mm measured in the clinical setting, the expected TRE in the whole skull was less than 2.5 mm, and the expected TRE in the whole brain was less than 1.75 mm when using all the nine ALs. A small TRE could also be achieved in the corresponding surgical field by using the other three configurations with less ALs. In the clinical experiment, the FLE ranges in the image and the patient space were 1.4-3.6 mm and 1.6-5.5 mm, respectively. The measured TRE and FRE were 3.1 ± 0.75 mm and 3.5 ± 0.17 mm, respectively.The AL configurations proposed in this investigation provide sufficient registration accuracy and can help to avoid the disadvantages of SMs if used clinically.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Lin发布了新的文献求助20
4秒前
靖123456发布了新的文献求助10
4秒前
npknpk发布了新的文献求助10
4秒前
修勾勾完成签到,获得积分10
5秒前
5秒前
7秒前
打打应助npknpk采纳,获得10
9秒前
修勾勾发布了新的文献求助10
9秒前
光纤陀螺完成签到,获得积分10
10秒前
无铭发布了新的文献求助10
11秒前
尹晓敏发布了新的文献求助10
13秒前
13秒前
光亮的翼完成签到,获得积分10
14秒前
14秒前
STUBLE发布了新的文献求助10
15秒前
天天发布了新的文献求助10
16秒前
Akim应助小于采纳,获得10
16秒前
风中青发布了新的文献求助50
17秒前
今后应助jiajia采纳,获得10
18秒前
xx发布了新的文献求助10
19秒前
20秒前
zycdx3906完成签到,获得积分10
20秒前
丘比特应助瓦猫采纳,获得10
21秒前
脑洞疼应助靖123456采纳,获得10
22秒前
王佳乐完成签到,获得积分10
22秒前
Lin完成签到,获得积分10
22秒前
虚心的念文完成签到,获得积分10
22秒前
慕青应助Lvj采纳,获得10
23秒前
狗蛋发布了新的文献求助10
23秒前
停停完成签到,获得积分10
23秒前
24秒前
24秒前
阿勒泰发布了新的文献求助10
25秒前
王佳乐发布了新的文献求助10
26秒前
27秒前
28秒前
万能图书馆应助iu采纳,获得10
30秒前
希夷发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525113
求助须知:如何正确求助?哪些是违规求助? 3105858
关于积分的说明 9276751
捐赠科研通 2803146
什么是DOI,文献DOI怎么找? 1538444
邀请新用户注册赠送积分活动 716232
科研通“疑难数据库(出版商)”最低求助积分说明 709319