Dangling bonds and Schottky barriers

肖特基势垒 覆盖层 肖特基二极管 悬空债券 凝聚态物理 半导体 材料科学 费米能级 金属半导体结 带隙 表面状态 光电子学 物理 曲面(拓扑) 量子力学 几何学 数学 二极管 电子
作者
Otto F. Sankey,Roland E. Allen,Shang-Fen Ren,John D. Dow
出处
期刊:Journal of vacuum science & technology [American Vacuum Society]
卷期号:3 (4): 1162-1166 被引量:48
标识
DOI:10.1116/1.583032
摘要

We review theoretical interpretations of Schottky barriers and Fermi-level pinning, which result when metals and other chemical species are deposited on semiconductor surfaces. Experiments indicate that these two phenomena are closely connected, so a theory of Schottky barriers must also explain Fermi-level pinning for submonolayer coverages of both metallic and nonmetallic species. Proposed mechanisms include the following: (a) Intrinsic surface states. For GaAs and several other materials, there are no intrinsic surface states within the band gap; GaP, e.g., does have surface states in the gap, but they are not at the correct energy to explain Schottky barrier formation. (b) M e t a l-induced gap states. These states, which require a thick metal overlayer, cannot explain Fermi-level pinning at submonolayer metallic coverages. They also cannot explain why a single semiconductor (n-type InP) exhibits two distinct Schottky barrier heights. Furthermore, they cannot explain why the Schottky barrier persists when there is an oxide layer between semiconductor and metal. Metal-induced states can in principle give rise to Schottky barriers at defect-free interfaces, but they fail to explain much of the existing experimental data for III–V semiconductors and Si. (c) The classic Schottky model. This model is not in agreement with experiment for III–V and Group IV semiconductors, but does appear to account for the measurements involving nonreactive metals on GaSe−a layered material expected to be relatively free of defects. (d) The Spicer defect model. This phenomenological model, now supported by microscopic theoretical studies, appears to account for many of the observations regarding Schottky barrier and Fermi-level pinning. We review our theoretical investigations within the framework of the defect model, which provide a satisfactory explanation of the principal observations for both III–V and Group IV semiconductors. We conclude that the levels responsible for Schottky barriers and Fermi-level pinning arise from two sources: (1) bulk-derived deep levels (e.g., the deep donor level for the antisite defect AsGa, which persists when this defect is present at the surface, but which is shifted in energy), and (2) dangling-bond deep levels (which are also shifted in energy according to the environment of the dangling bond). Most of the observed Schottky barriers—for both III–V and Group IV semiconductors—are attributed to dangling bonds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小薇完成签到,获得积分10
刚刚
1秒前
lynn完成签到 ,获得积分10
1秒前
2秒前
liu发布了新的文献求助10
2秒前
2秒前
3秒前
研友_VZG7GZ应助pangboo采纳,获得10
3秒前
研友_VZG7GZ应助可达鸭采纳,获得10
4秒前
5秒前
5秒前
6秒前
明理文龙完成签到,获得积分20
6秒前
鲸鱼发布了新的文献求助10
7秒前
蜀黍完成签到,获得积分10
7秒前
灵犀完成签到 ,获得积分10
7秒前
7秒前
lulu发布了新的文献求助10
8秒前
8秒前
Orange应助科研不懂12采纳,获得10
9秒前
帅气凝云发布了新的文献求助10
9秒前
光亮之桃发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
11秒前
研友_nEW4G8发布了新的文献求助10
11秒前
12秒前
wsl_csu发布了新的文献求助30
13秒前
orixero应助帅气凝云采纳,获得10
14秒前
14秒前
xuxingjie发布了新的文献求助10
15秒前
dique3hao完成签到 ,获得积分10
18秒前
whocare发布了新的文献求助10
19秒前
jiaqiLi发布了新的文献求助10
19秒前
20秒前
在水一方应助lianhe采纳,获得10
21秒前
fh完成签到 ,获得积分10
22秒前
科研通AI5应助DH采纳,获得10
22秒前
23秒前
哈哈哈哈发布了新的文献求助10
23秒前
24秒前
lyt发布了新的文献求助10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981