亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dangling bonds and Schottky barriers

肖特基势垒 覆盖层 肖特基二极管 悬空债券 凝聚态物理 半导体 材料科学 费米能级 金属半导体结 带隙 表面状态 光电子学 物理 曲面(拓扑) 量子力学 几何学 电子 二极管 数学
作者
Otto F. Sankey,Roland E. Allen,Shang-Fen Ren,John D. Dow
出处
期刊:Journal of vacuum science & technology [American Vacuum Society]
卷期号:3 (4): 1162-1166 被引量:48
标识
DOI:10.1116/1.583032
摘要

We review theoretical interpretations of Schottky barriers and Fermi-level pinning, which result when metals and other chemical species are deposited on semiconductor surfaces. Experiments indicate that these two phenomena are closely connected, so a theory of Schottky barriers must also explain Fermi-level pinning for submonolayer coverages of both metallic and nonmetallic species. Proposed mechanisms include the following: (a) Intrinsic surface states. For GaAs and several other materials, there are no intrinsic surface states within the band gap; GaP, e.g., does have surface states in the gap, but they are not at the correct energy to explain Schottky barrier formation. (b) M e t a l-induced gap states. These states, which require a thick metal overlayer, cannot explain Fermi-level pinning at submonolayer metallic coverages. They also cannot explain why a single semiconductor (n-type InP) exhibits two distinct Schottky barrier heights. Furthermore, they cannot explain why the Schottky barrier persists when there is an oxide layer between semiconductor and metal. Metal-induced states can in principle give rise to Schottky barriers at defect-free interfaces, but they fail to explain much of the existing experimental data for III–V semiconductors and Si. (c) The classic Schottky model. This model is not in agreement with experiment for III–V and Group IV semiconductors, but does appear to account for the measurements involving nonreactive metals on GaSe−a layered material expected to be relatively free of defects. (d) The Spicer defect model. This phenomenological model, now supported by microscopic theoretical studies, appears to account for many of the observations regarding Schottky barrier and Fermi-level pinning. We review our theoretical investigations within the framework of the defect model, which provide a satisfactory explanation of the principal observations for both III–V and Group IV semiconductors. We conclude that the levels responsible for Schottky barriers and Fermi-level pinning arise from two sources: (1) bulk-derived deep levels (e.g., the deep donor level for the antisite defect AsGa, which persists when this defect is present at the surface, but which is shifted in energy), and (2) dangling-bond deep levels (which are also shifted in energy according to the environment of the dangling bond). Most of the observed Schottky barriers—for both III–V and Group IV semiconductors—are attributed to dangling bonds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
Electrocatalysis完成签到,获得积分10
19秒前
lulu发布了新的文献求助10
20秒前
30秒前
量子星尘发布了新的文献求助30
35秒前
Hello应助泪雨煊采纳,获得10
41秒前
50秒前
55秒前
57秒前
泪雨煊完成签到,获得积分10
58秒前
泪雨煊发布了新的文献求助10
1分钟前
Otter完成签到,获得积分10
1分钟前
柳贯一完成签到,获得积分10
1分钟前
科研通AI6.1应助任性学姐采纳,获得10
1分钟前
1分钟前
任性学姐发布了新的文献求助10
1分钟前
务实的翠风完成签到,获得积分10
1分钟前
小蘑菇应助务实的翠风采纳,获得10
1分钟前
科研通AI6.1应助任性学姐采纳,获得10
1分钟前
Akim应助qc采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
zzz关闭了zzz文献求助
2分钟前
朴实的河马完成签到,获得积分10
2分钟前
任性学姐发布了新的文献求助10
2分钟前
耶格尔完成签到 ,获得积分10
2分钟前
weibo完成签到,获得积分10
2分钟前
光亮的万天完成签到 ,获得积分10
2分钟前
轻松戎发布了新的文献求助10
2分钟前
迷人的焦完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
英俊的铭应助白山采纳,获得10
2分钟前
桐桐应助轻松戎采纳,获得10
2分钟前
大林完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739408
求助须知:如何正确求助?哪些是违规求助? 5386143
关于积分的说明 15339719
捐赠科研通 4881969
什么是DOI,文献DOI怎么找? 2624052
邀请新用户注册赠送积分活动 1572745
关于科研通互助平台的介绍 1529540