Dangling bonds and Schottky barriers

肖特基势垒 覆盖层 肖特基二极管 悬空债券 凝聚态物理 半导体 材料科学 费米能级 金属半导体结 带隙 表面状态 光电子学 物理 曲面(拓扑) 量子力学 几何学 电子 二极管 数学
作者
Otto F. Sankey,Roland E. Allen,Shang-Fen Ren,John D. Dow
出处
期刊:Journal of vacuum science & technology [American Vacuum Society]
卷期号:3 (4): 1162-1166 被引量:48
标识
DOI:10.1116/1.583032
摘要

We review theoretical interpretations of Schottky barriers and Fermi-level pinning, which result when metals and other chemical species are deposited on semiconductor surfaces. Experiments indicate that these two phenomena are closely connected, so a theory of Schottky barriers must also explain Fermi-level pinning for submonolayer coverages of both metallic and nonmetallic species. Proposed mechanisms include the following: (a) Intrinsic surface states. For GaAs and several other materials, there are no intrinsic surface states within the band gap; GaP, e.g., does have surface states in the gap, but they are not at the correct energy to explain Schottky barrier formation. (b) M e t a l-induced gap states. These states, which require a thick metal overlayer, cannot explain Fermi-level pinning at submonolayer metallic coverages. They also cannot explain why a single semiconductor (n-type InP) exhibits two distinct Schottky barrier heights. Furthermore, they cannot explain why the Schottky barrier persists when there is an oxide layer between semiconductor and metal. Metal-induced states can in principle give rise to Schottky barriers at defect-free interfaces, but they fail to explain much of the existing experimental data for III–V semiconductors and Si. (c) The classic Schottky model. This model is not in agreement with experiment for III–V and Group IV semiconductors, but does appear to account for the measurements involving nonreactive metals on GaSe−a layered material expected to be relatively free of defects. (d) The Spicer defect model. This phenomenological model, now supported by microscopic theoretical studies, appears to account for many of the observations regarding Schottky barrier and Fermi-level pinning. We review our theoretical investigations within the framework of the defect model, which provide a satisfactory explanation of the principal observations for both III–V and Group IV semiconductors. We conclude that the levels responsible for Schottky barriers and Fermi-level pinning arise from two sources: (1) bulk-derived deep levels (e.g., the deep donor level for the antisite defect AsGa, which persists when this defect is present at the surface, but which is shifted in energy), and (2) dangling-bond deep levels (which are also shifted in energy according to the environment of the dangling bond). Most of the observed Schottky barriers—for both III–V and Group IV semiconductors—are attributed to dangling bonds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴的海豚完成签到,获得积分10
1秒前
麦田里的守望者完成签到,获得积分10
4秒前
萧一发布了新的文献求助10
4秒前
5秒前
6秒前
乐乐应助周周不喝粥采纳,获得10
7秒前
我是老大应助12345采纳,获得10
8秒前
英姑应助萧一采纳,获得10
10秒前
ww发布了新的文献求助10
10秒前
howard发布了新的文献求助10
12秒前
14秒前
wuxunxun2015发布了新的文献求助10
15秒前
17秒前
微信研友发布了新的文献求助10
19秒前
yznfly完成签到,获得积分0
19秒前
bkagyin应助宋鹏浩采纳,获得30
20秒前
Zhou完成签到,获得积分10
20秒前
342396102发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
丘比特应助萱棚采纳,获得10
22秒前
123发布了新的文献求助10
22秒前
微信研友完成签到,获得积分10
28秒前
小马甲应助危机的语琴采纳,获得10
29秒前
29秒前
30秒前
fafa完成签到,获得积分10
32秒前
32秒前
Jackson完成签到 ,获得积分10
34秒前
12345发布了新的文献求助10
34秒前
ljq完成签到,获得积分10
35秒前
夏熠完成签到,获得积分10
35秒前
37秒前
罗Eason发布了新的文献求助10
38秒前
aw完成签到,获得积分10
39秒前
Jeannie完成签到,获得积分10
41秒前
43秒前
我爱陶子完成签到 ,获得积分10
43秒前
星辰大海应助一个西藏采纳,获得10
44秒前
46秒前
咩咩羊完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856886
捐赠科研通 4696312
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851