Application of Machine Learning Algorithms to Predict Acute Kidney Injury in Elderly Orthopedic Postoperative Patients

医学 列线图 急性肾损伤 逻辑回归 接收机工作特性 布里氏评分 骨科手术 回顾性队列研究 算法 队列 机器学习 内科学 急诊医学 外科 计算机科学
作者
Qiuchong Chen,Yixue Zhang,Mengjun Zhang,Ziying Li,Jindong Liu
出处
期刊:Clinical Interventions in Aging [Dove Medical Press]
卷期号:Volume 17: 317-330 被引量:13
标识
DOI:10.2147/cia.s349978
摘要

There has been a worldwide increment in acute kidney injury (AKI) incidence among elderly orthopedic operative patients. The AKI prediction model provides patients' early detection a possibility at risk of AKI; most of the AKI prediction models derive, however, from the cardiothoracic operation. The purpose of this study is to predict the risk of AKI in elderly patients after orthopedic surgery based on machine learning algorithm models.We organized a retrospective study being comprised of 1000 patients with postoperative AKI undergoing orthopedic surgery from September 2016, to June, 2021. They were divided into training (80%;n=799) and test (20%;n=201) sets.We utilized nine machine learning (ML) algorithms and used intraoperative information and preoperative clinical features to acquire models to predict AKI. The performance of the model was evaluated according to the area under the receiver operating characteristic (AUC), sensitivity, specificity and accuracy. Select the optimal model and establish the nomogram to make the prediction model visualization. The concordance statistic (C-statistic) and calibration curve were used to discriminate and calibrate the nomogram respectively.In predicting AKI, nine ML algorithms posted AUC of 0.656-1.000 in the training cohort, with the randomforest standing out and AUC of 0.674-0.821 in the test cohort, with the logistic regression model standing out. Thus, we applied the logistic regression model to establish nomogram. The nomogram was comprised of ten variables: age, body mass index, American Society of Anesthesiologists, hypoproteinemia, hypertension, diabetes, anemia, duration of low mean arterial pressure, mean arterial pressure, transfusion.The calibration curves showed good agreement between prediction and observation in both the training and test sets.By including intraoperative and preoperative risk factors, ML algorithm can predict AKI and logistic regression model performing the best. Our prediction model and nomogram that are based on this ML algorithm can help lead decision-making for strategies to inhibit AKI over the perioperative duration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助纯真的德地采纳,获得10
1秒前
樱桃猴子发布了新的文献求助10
1秒前
1秒前
chen完成签到,获得积分10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
wzy发布了新的文献求助20
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
苏卿应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
VDC应助科研通管家采纳,获得30
2秒前
大模型应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
研究僧完成签到,获得积分10
2秒前
朝天应助科研通管家采纳,获得10
2秒前
九星应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
苏卿应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
YXHTCM发布了新的文献求助10
4秒前
rry完成签到 ,获得积分20
4秒前
白桃乌龙完成签到,获得积分10
4秒前
5秒前
5秒前
roy_chiang发布了新的文献求助10
5秒前
OuO完成签到,获得积分10
5秒前
jack完成签到,获得积分10
6秒前
华仔应助小单王采纳,获得10
6秒前
6秒前
学好英语完成签到,获得积分10
6秒前
充电宝应助张宇琪采纳,获得10
7秒前
7秒前
科研通AI5应助山水木采纳,获得10
8秒前
上官若男应助哈瓦哈瓦采纳,获得10
8秒前
科研通AI5应助linshiba_18采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246