Edge-Guided Recurrent Positioning Network for Salient Object Detection in Optical Remote Sensing Images

GSM演进的增强数据速率 突出 计算机科学 编码器 人工智能 对象(语法) 计算机视觉 解码方法 特征(语言学) 代表(政治) 过程(计算) 遥感 地理 算法 政治 操作系统 哲学 语言学 法学 政治学
作者
Xiaofei Zhou,Kunye Shen,Li Weng,Runmin Cong,Bolun Zheng,Jiyong Zhang,Chenggang Yan
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 539-552 被引量:105
标识
DOI:10.1109/tcyb.2022.3163152
摘要

Optical remote sensing images (RSIs) have been widely used in many applications, and one of the interesting issues about optical RSIs is the salient object detection (SOD). However, due to diverse object types, various object scales, numerous object orientations, and cluttered backgrounds in optical RSIs, the performance of the existing SOD models often degrade largely. Meanwhile, cutting-edge SOD models targeting optical RSIs typically focus on suppressing cluttered backgrounds, while they neglect the importance of edge information which is crucial for obtaining precise saliency maps. To address this dilemma, this article proposes an edge-guided recurrent positioning network (ERPNet) to pop-out salient objects in optical RSIs, where the key point lies in the edge-aware position attention unit (EPAU). First, the encoder is used to give salient objects a good representation, that is, multilevel deep features, which are then delivered into two parallel decoders, including: 1) an edge extraction part and 2) a feature fusion part. The edge extraction module and the encoder form a U-shape architecture, which not only provides accurate salient edge clues but also ensures the integrality of edge information by extra deploying the intraconnection. That is to say, edge features can be generated and reinforced by incorporating object features from the encoder. Meanwhile, each decoding step of the feature fusion module provides the position attention about salient objects, where position cues are sharpened by the effective edge information and are used to recurrently calibrate the misaligned decoding process. After that, we can obtain the final saliency map by fusing all position attention cues. Extensive experiments are conducted on two public optical RSIs datasets, and the results show that the proposed ERPNet can accurately and completely pop-out salient objects, which consistently outperforms the state-of-the-art SOD models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动白开水完成签到,获得积分10
1秒前
普萘洛尔完成签到 ,获得积分10
1秒前
2秒前
李铛铛发布了新的文献求助20
2秒前
yy123发布了新的文献求助10
4秒前
yzy应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
睡觉做大梦完成签到 ,获得积分10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
tramp应助科研通管家采纳,获得10
6秒前
NexusExplorer应助人人人采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
6秒前
金光闪闪发布了新的文献求助10
6秒前
小马过河应助科研通管家采纳,获得10
6秒前
完美世界应助123采纳,获得10
6秒前
建志应助科研通管家采纳,获得10
7秒前
tramp应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
鱼雁发布了新的文献求助10
7秒前
老阳发布了新的文献求助10
11秒前
禾沐完成签到,获得积分10
11秒前
12秒前
山水有重逢完成签到,获得积分10
13秒前
14秒前
17秒前
lailai发布了新的文献求助10
17秒前
xuhaoo0125完成签到,获得积分10
18秒前
zsy发布了新的文献求助10
19秒前
人人人完成签到,获得积分10
20秒前
22秒前
人人人发布了新的文献求助10
23秒前
23秒前
登峰发布了新的文献求助30
23秒前
倒倒带带发布了新的文献求助10
26秒前
深情安青应助搞怪绿柳采纳,获得10
26秒前
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738651
求助须知:如何正确求助?哪些是违规求助? 3282034
关于积分的说明 10027372
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645559
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975