An enhanced multi-modal brain graph network for classifying neuropsychiatric disorders

计算机科学 模式识别(心理学) 人工智能 邻接矩阵 图形 二元分类 机器学习 支持向量机 理论计算机科学
作者
Liangliang Liu,Yu‐Ping Wang,Yi Wang,Pei Zhang,Shufeng Xiong
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:81: 102550-102550 被引量:29
标识
DOI:10.1016/j.media.2022.102550
摘要

It has been proven that neuropsychiatric disorders (NDs) can be associated with both structures and functions of brain regions. Thus, data about structures and functions could be usefully combined in a comprehensive analysis. While brain structural MRI (sMRI) images contain anatomic and morphological information about NDs, functional MRI (fMRI) images carry complementary information. However, efficient extraction and fusion of sMRI and fMRI data remains challenging. In this study, we develop an enhanced multi-modal graph convolutional network (MME-GCN) in a binary classification between patients with NDs and healthy controls, based on the fusion of the structural and functional graphs of the brain region. First, based on the same brain atlas, we construct structural and functional graphs from sMRI and fMRI data, respectively. Second, we use machine learning to extract important features from the structural graph network. Third, we use these extracted features to adjust the corresponding edge weights in the functional graph network. Finally, we train a multi-layer GCN and use it in binary classification task. MME-GCN achieved 93.71% classification accuracy on the open data set provided by the Consortium for Neuropsychiatric Phenomics. In addition, we analyzed the important features selected from the structural graph and verified them in the functional graph. Using MME-GCN, we found several specific brain connections important to NDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曹文鹏完成签到,获得积分10
1秒前
jenningseastera应助老朱采纳,获得10
1秒前
1秒前
雪途完成签到,获得积分10
1秒前
leaolf应助摇一摇采纳,获得10
1秒前
1秒前
PePsi完成签到 ,获得积分10
1秒前
幸福大白发布了新的文献求助10
2秒前
2秒前
12345发布了新的文献求助10
2秒前
3秒前
江流儿发布了新的文献求助20
4秒前
孙同学发布了新的文献求助10
6秒前
赘婿应助wjt采纳,获得10
6秒前
6秒前
Owen应助YW采纳,获得10
7秒前
巷陌巾发布了新的文献求助10
8秒前
烟花应助星辰坠于海采纳,获得10
8秒前
cc完成签到 ,获得积分10
8秒前
9秒前
淡定小小完成签到,获得积分10
11秒前
迷路小丸子完成签到,获得积分10
11秒前
Owen应助冷泠采纳,获得10
11秒前
孙同学完成签到,获得积分10
11秒前
冷静灵竹完成签到,获得积分10
12秒前
sfliufighting发布了新的文献求助10
12秒前
充电宝应助GXP采纳,获得10
12秒前
科研通AI5应助无限傲易采纳,获得10
12秒前
Shi发布了新的文献求助10
12秒前
wang97应助zzy采纳,获得20
13秒前
15秒前
上官若男应助鱼与木头采纳,获得10
16秒前
老头大学习关注了科研通微信公众号
18秒前
平淡的鸿完成签到,获得积分10
19秒前
巷陌巾完成签到,获得积分10
19秒前
正直画笔完成签到 ,获得积分10
19秒前
19秒前
20秒前
Orange应助Shi采纳,获得10
20秒前
jenningseastera应助老朱采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547101
求助须知:如何正确求助?哪些是违规求助? 3978164
关于积分的说明 12318204
捐赠科研通 3646677
什么是DOI,文献DOI怎么找? 2008295
邀请新用户注册赠送积分活动 1043874
科研通“疑难数据库(出版商)”最低求助积分说明 932515