An enhanced multi-modal brain graph network for classifying neuropsychiatric disorders

计算机科学 模式识别(心理学) 人工智能 邻接矩阵 图形 二元分类 机器学习 支持向量机 理论计算机科学
作者
Liangliang Liu,Yu‐Ping Wang,Yi Wang,Pei Zhang,Shufeng Xiong
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:81: 102550-102550 被引量:29
标识
DOI:10.1016/j.media.2022.102550
摘要

It has been proven that neuropsychiatric disorders (NDs) can be associated with both structures and functions of brain regions. Thus, data about structures and functions could be usefully combined in a comprehensive analysis. While brain structural MRI (sMRI) images contain anatomic and morphological information about NDs, functional MRI (fMRI) images carry complementary information. However, efficient extraction and fusion of sMRI and fMRI data remains challenging. In this study, we develop an enhanced multi-modal graph convolutional network (MME-GCN) in a binary classification between patients with NDs and healthy controls, based on the fusion of the structural and functional graphs of the brain region. First, based on the same brain atlas, we construct structural and functional graphs from sMRI and fMRI data, respectively. Second, we use machine learning to extract important features from the structural graph network. Third, we use these extracted features to adjust the corresponding edge weights in the functional graph network. Finally, we train a multi-layer GCN and use it in binary classification task. MME-GCN achieved 93.71% classification accuracy on the open data set provided by the Consortium for Neuropsychiatric Phenomics. In addition, we analyzed the important features selected from the structural graph and verified them in the functional graph. Using MME-GCN, we found several specific brain connections important to NDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Liolsy采纳,获得10
刚刚
正直的语山完成签到,获得积分10
1秒前
1秒前
易烊千玺完成签到,获得积分10
1秒前
OAK发布了新的文献求助10
1秒前
xiongyh10完成签到,获得积分10
1秒前
兴奋的定帮应助二宝采纳,获得10
1秒前
三度和弦发布了新的文献求助10
1秒前
大个应助yangyang2021采纳,获得10
2秒前
核桃应助Mrmao0213采纳,获得10
3秒前
3秒前
科目三应助彩色的过客采纳,获得10
3秒前
4秒前
zhang26xian完成签到,获得积分10
4秒前
DoLaso发布了新的文献求助10
4秒前
4秒前
wenbo完成签到,获得积分10
5秒前
呆呆发布了新的文献求助10
5秒前
领导范儿应助猪猪hero采纳,获得30
5秒前
踏实水池关注了科研通微信公众号
6秒前
汉堡包应助帅气的帅小伙采纳,获得10
6秒前
6秒前
Jerlly完成签到,获得积分0
7秒前
7秒前
王丹靖发布了新的文献求助20
7秒前
礼礼发布了新的文献求助10
8秒前
8秒前
9秒前
为不争完成签到,获得积分10
9秒前
juice完成签到,获得积分10
9秒前
黎日新完成签到,获得积分10
10秒前
66完成签到,获得积分10
10秒前
10秒前
sun完成签到 ,获得积分10
10秒前
英俊的铭应助强健的糖豆采纳,获得10
10秒前
Tao完成签到,获得积分10
11秒前
zhaomr完成签到,获得积分10
11秒前
今后应助lyh采纳,获得10
13秒前
山复尔尔应助jiao采纳,获得10
13秒前
lllll完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993