Machine Learning Risk Prediction Model of 90-day Mortality After Gastrectomy for Cancer

医学 队列 逻辑回归 胃切除术 癌症 置信区间 内科学 癌症登记处 队列研究 外科
作者
Manuel Pera,Joan Gibert,Marta Gimeno,Elisenda Garsot,Emma Eizaguirre,Mònica Miró,Sandra Castro,Coro Miranda,Lorena Reka,Saioa Leturio,Marta González,Clara Codony,Yanina Gobbini,Alexis Luna,Sonia Fernández–Ananín,Aingeru Sarriugarte Lasarte,Carles Olona,Joaquín Rodríguez-Santiago,Javier Osorio,Luís Grande
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:276 (5): 776-783 被引量:29
标识
DOI:10.1097/sla.0000000000005616
摘要

Objective: To develop and validate a risk prediction model of 90-day mortality (90DM) using machine learning in a large multicenter cohort of patients undergoing gastric cancer resection with curative intent. Background: The 90DM rate after gastrectomy for cancer is a quality of care indicator in surgical oncology. There is a lack of well-validated instruments for personalized prognosis of gastric cancer. Methods: Consecutive patients with gastric adenocarcinoma who underwent potentially curative gastrectomy between 2014 and 2021 registered in the Spanish EURECCA Esophagogastric Cancer Registry database were included. The 90DM for all causes was the study outcome. Preoperative clinical characteristics were tested in four 90DM predictive models: Cross Validated Elastic regularized logistic regression method (cv-Enet), boosting linear regression (glmboost), random forest, and an ensemble model. Performance was evaluated using the area under the curve by 10-fold cross-validation. Results: A total of 3182 and 260 patients from 39 institutions in 6 regions were included in the development and validation cohorts, respectively. The 90DM rate was 5.6% and 6.2%, respectively. The random forest model showed the best discrimination capacity with a validated area under the curve of 0.844 [95% confidence interval (CI): 0.841–0.848] as compared with cv-Enet (0.796, 95% CI: 0.784–0.808), glmboost (0.797, 95% CI: 0.785–0.809), and ensemble model (0.847, 95% CI: 0.836–0.858) in the development cohort. Similar discriminative capacity was observed in the validation cohort. Conclusions: A robust clinical model for predicting the risk of 90DM after surgery of gastric cancer was developed. Its use may aid patients and surgeons in making informed decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呓语眠眠完成签到,获得积分10
刚刚
Leon完成签到,获得积分10
3秒前
knoren完成签到,获得积分20
3秒前
123完成签到,获得积分10
4秒前
5秒前
归尘发布了新的文献求助30
5秒前
Akim应助Allen采纳,获得10
6秒前
赘婿应助hhc采纳,获得10
9秒前
9秒前
10秒前
说话的月亮完成签到,获得积分10
10秒前
JamesPei应助卡皮巴拉采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
百香果发布了新的文献求助10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
今后应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
坦率霆发布了新的文献求助10
12秒前
12秒前
今后应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
无花果应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
totoo2021应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761261
求助须知:如何正确求助?哪些是违规求助? 5528834
关于积分的说明 15399228
捐赠科研通 4897799
什么是DOI,文献DOI怎么找? 2634456
邀请新用户注册赠送积分活动 1582550
关于科研通互助平台的介绍 1537841