Machine Learning Risk Prediction Model of 90-day Mortality After Gastrectomy for Cancer

医学 队列 逻辑回归 胃切除术 癌症 置信区间 内科学 癌症登记处 队列研究 外科
作者
Manuel Pera,Joan Gibert,Marta Gimeno,Elisenda Garsot,Emma Eizaguirre,Mònica Miró,Sandra Castro,Coro Miranda,Lorena Reka,Saioa Leturio,Marta González,Clara Codony,Yanina Gobbini,Alexis Luna,Sonia Fernández–Ananín,Aingeru Sarriugarte Lasarte,Carles Olona,Joaquín Rodríguez-Santiago,Javier Osorio,Luís Grande
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:276 (5): 776-783 被引量:29
标识
DOI:10.1097/sla.0000000000005616
摘要

Objective: To develop and validate a risk prediction model of 90-day mortality (90DM) using machine learning in a large multicenter cohort of patients undergoing gastric cancer resection with curative intent. Background: The 90DM rate after gastrectomy for cancer is a quality of care indicator in surgical oncology. There is a lack of well-validated instruments for personalized prognosis of gastric cancer. Methods: Consecutive patients with gastric adenocarcinoma who underwent potentially curative gastrectomy between 2014 and 2021 registered in the Spanish EURECCA Esophagogastric Cancer Registry database were included. The 90DM for all causes was the study outcome. Preoperative clinical characteristics were tested in four 90DM predictive models: Cross Validated Elastic regularized logistic regression method (cv-Enet), boosting linear regression (glmboost), random forest, and an ensemble model. Performance was evaluated using the area under the curve by 10-fold cross-validation. Results: A total of 3182 and 260 patients from 39 institutions in 6 regions were included in the development and validation cohorts, respectively. The 90DM rate was 5.6% and 6.2%, respectively. The random forest model showed the best discrimination capacity with a validated area under the curve of 0.844 [95% confidence interval (CI): 0.841–0.848] as compared with cv-Enet (0.796, 95% CI: 0.784–0.808), glmboost (0.797, 95% CI: 0.785–0.809), and ensemble model (0.847, 95% CI: 0.836–0.858) in the development cohort. Similar discriminative capacity was observed in the validation cohort. Conclusions: A robust clinical model for predicting the risk of 90DM after surgery of gastric cancer was developed. Its use may aid patients and surgeons in making informed decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwei完成签到,获得积分10
1秒前
1秒前
科目三应助称心的砖头采纳,获得10
1秒前
自信的小鸽子完成签到,获得积分10
2秒前
酷波er应助Cornelia采纳,获得10
2秒前
3秒前
3秒前
Iridescent发布了新的文献求助20
4秒前
5秒前
RUI发布了新的文献求助10
5秒前
6秒前
若萱完成签到,获得积分10
6秒前
7秒前
烤冷面应助文艺水风采纳,获得20
7秒前
李大白完成签到 ,获得积分10
8秒前
wushuang完成签到,获得积分10
8秒前
ines发布了新的文献求助10
8秒前
Yuki发布了新的文献求助30
9秒前
Adzuki0812发布了新的文献求助10
9秒前
维尼熊完成签到 ,获得积分10
9秒前
学术羊发布了新的文献求助10
9秒前
9秒前
10秒前
Owen应助赵好好采纳,获得10
10秒前
幸运的羊完成签到,获得积分10
10秒前
11秒前
豆浆来点蒜泥完成签到,获得积分10
12秒前
zy发布了新的文献求助10
12秒前
老阎应助seven765采纳,获得30
12秒前
yaoccccchen完成签到,获得积分10
12秒前
深情安青应助说话请投币采纳,获得10
12秒前
蒸制发布了新的文献求助10
13秒前
青乔完成签到,获得积分10
13秒前
13秒前
田国兵发布了新的文献求助10
14秒前
Diane完成签到,获得积分10
14秒前
充电宝应助豆包采纳,获得10
14秒前
15秒前
15秒前
脑洞疼应助生动的沧海采纳,获得10
16秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204858
求助须知:如何正确求助?哪些是违规求助? 4383758
关于积分的说明 13650861
捐赠科研通 4241754
什么是DOI,文献DOI怎么找? 2327024
邀请新用户注册赠送积分活动 1324769
关于科研通互助平台的介绍 1276983