Predicting Election Results Via Social Media: A Case Study for 2018 Turkish Presidential Election

总统选举 社会化媒体 计算机科学 土耳其 任务(项目管理) 样品(材料) 基线(sea) 人工智能 数据挖掘 政治学 万维网 工程类 语言学 哲学 政治 法学 化学 系统工程 色谱法
作者
Cansın Bayrak,Mücahid Kutlu
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 2362-2373 被引量:3
标识
DOI:10.1109/tcss.2022.3178052
摘要

Social media platforms provide massive amounts of data that can be used to analyze social issues and forecast events in the future. However, it is a challenging task due to the biased and noisy nature of the data. In this work, we propose a method to predict election results via Twitter. In particular, we first detect the stance of social media accounts using their retweets. Subsequently, we develop four different counting methods for our prediction task. In the simple user counting (SC) method, we count labeled users without taking any further steps to reduce bias. In the city-based weighted counting (CBWC) method, we apply a weighted counting based on the number of electorate in each city. The closest-city-based prediction (CCBP) method utilizes sociological similarity between cities to predict results for cities with limited sample sizes. The using former election results (UFERs) method compares predictions for each city against former election results to detect data bias and uses them accordingly. We evaluate our proposed methods with the data collected for the presidential election of Turkey held in 2018. In our extensive evaluation, we show that utilizing domain-specific information and location-based weighted counting is effective in reducing bias. CBWC, CCBP, and UFER methods outperform tweet-counting-based baseline methods. Furthermore, UFER and CCBP outperform almost all traditional polls, suggesting that social media platforms are alternative mediums for conducting election polls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒的诗桃应助笨笨采纳,获得10
1秒前
qcck完成签到,获得积分10
2秒前
彭于晏应助navvv采纳,获得10
2秒前
2秒前
2秒前
you完成签到 ,获得积分10
3秒前
李爱国应助求助人采纳,获得10
3秒前
英俊的铭应助lucas采纳,获得10
3秒前
科研通AI5应助大块采纳,获得30
3秒前
4秒前
FashionBoy应助绿水杯采纳,获得10
4秒前
4444l完成签到,获得积分10
5秒前
5秒前
烟花应助大胆的书白采纳,获得10
5秒前
呐呐呐发布了新的文献求助10
5秒前
张星星发布了新的文献求助10
7秒前
搞科研的静静完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
彳亍1117应助王大可采纳,获得10
9秒前
华仔应助厚朴大师采纳,获得10
9秒前
Avery完成签到 ,获得积分10
10秒前
11秒前
科目三应助嘻嘻采纳,获得10
11秒前
vee完成签到,获得积分10
11秒前
12秒前
桐桐应助小五采纳,获得10
13秒前
嗷嗷嗷啊发布了新的文献求助10
13秒前
lucas发布了新的文献求助10
13秒前
搜集达人应助粥粥采纳,获得10
13秒前
Auston_zhong应助呐呐呐采纳,获得10
13秒前
笑点低歌曲完成签到,获得积分10
13秒前
14秒前
4444l发布了新的文献求助10
14秒前
学术垃圾制造者完成签到,获得积分10
14秒前
14秒前
露噜噜发布了新的文献求助10
14秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702336
求助须知:如何正确求助?哪些是违规求助? 3252249
关于积分的说明 9878392
捐赠科研通 2964282
什么是DOI,文献DOI怎么找? 1625586
邀请新用户注册赠送积分活动 770101
科研通“疑难数据库(出版商)”最低求助积分说明 742762