克莱德
系统发育树
形态计量学
进化生物学
分类单元
生物
性格演变
系统发育学
古生物学
动物
生物化学
基因
作者
Mark J. Powers,Matteo Fabbri,Michael R. Doschak,Bhart‐Anjan S. Bhullar,David C. Evans,Mark A. Norell,Philip J. Currie
标识
DOI:10.1080/02724634.2021.2010087
摘要
Eudromaeosauria is a clade of derived dromaeosaurids that typifies the common perception of 'raptor' dinosaurs. The evolutionary history of this clade has been controversial due to conflicting views of taxonomic identity, and because, due to taphonomic bias, several species were diagnosed primarily or solely by the maxilla. The maxilla is therefore crucial in understanding the phylogenetic relationships within the clade. Morphometric characterization has been commonly applied to recognize and distinguish major dromaeosaurid clades. However, morphometrics mainly showed morphological convergence rather than phylogenetic relationships. This approach has made it difficult to get resolution of phylogenetic relationships among eudromaeosaurian taxa, often resulting in large polytomies or inconsistent placement of key species. To test previous character statements, computed tomography was used to analyze the maxillae of Acheroraptor, Atrociraptor, and Deinonychus, and compare them with other eudromaeosaurians from Asia and North America. Morphometric characters were examined, and regressions were used to look for allometric trends in maxillary dimensions and the relationship to topological landmarks within Eudromaeosauria and its outgroups. Characters were improved and implemented to better capture eudromaeosaurian morphological variation and better resolve their phylogenetic relationships. Phylogenetic analysis recovered three well-defined clades within Eudromaeosauria and corroborated occurrence data within the fossil record. Acheroraptor and Atrociraptor were recovered as derived members of Saurornitholestinae. Deinonychus is recovered as a basal eudromaeosaurian, sharing features with dromaeosaurines and saurornitholestines. These results challenge previous biogeographic hypotheses suggesting Asian and North American faunal interchange during the Late Cretaceous and support convergence of traits relating to snout dimensions and proportions.
科研通智能强力驱动
Strongly Powered by AbleSci AI