Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)

动态规划 数学优化 水准点(测量) 随机规划 启发式 计算机科学 能量(信号处理) 能源管理 算法 人工智能 数学 大地测量学 统计 地理
作者
Nan Xu,Yan Kong,Jinyue Yan,Hongjie Zhang,Yan Sui,Hao Ju,Heng Liu,Zhe Xu
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118668-118668 被引量:19
标识
DOI:10.1016/j.apenergy.2022.118668
摘要

To reveal the energy-saving mechanisms of global energy management, we propose a global optimization framework of “information layer-physical layer-energy layer-dynamic programming” (IPE-DP), which can realize the unity of different information scenarios, different vehicle configurations and energy conversions. The deterministic dynamic programing (DP) and adaptive dynamic programming (ADP) are taken as the core algorithms. As a benchmark for assessing the optimality, DP strategy has four main challenges: standardization, real-time application, accuracy, and satisfactory drivability. To solve the above problems, the IPE-DP optimization framework is established, which consists of three main layers, two interface layers and an application layer. To be specific, the full-factor trip information is acquired from three scenarios in the information layer, and then the feasible work modes of the vehicle are determined in the physical layer based on the proposed conservation framework of “kinetic/potential energy & onboard energy“. The above lays a foundation for the optimal energy distribution in the energy layer. Then, a global domain-searching algorithm and action-dependent heuristic dynamic programming (ADHDP) model are developed for different information acquisition scenarios to obtain the optimal solution. To improve the computational efficiency under the deterministic information, a fast DP is developed based on the statistical rules of DP behavior, the core of which is to restrict the exploring region based on a reference SOC trajectory. Regarding the stochastic trip information, the ADHDP model is established, including determining the utility function, network design and training process. Finally, two case studies are given to compare the economic performance of the vehicle under different information acquisition scenarios, which lays a foundation for analyzing the relationship between the amount of information input and energy-saving potential of the vehicle. Simulation results demonstrate that the proposed method gains a better performance in both real-time performance and global optimality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mary完成签到,获得积分10
刚刚
2秒前
独云完成签到,获得积分10
2秒前
3秒前
干之桃完成签到,获得积分10
3秒前
paparazzi221应助tt采纳,获得50
4秒前
4秒前
lan发布了新的文献求助10
4秒前
你说完成签到,获得积分10
5秒前
濮阳千易发布了新的文献求助20
5秒前
LIUJC完成签到,获得积分10
7秒前
弯弯完成签到 ,获得积分10
7秒前
8秒前
Agoni完成签到,获得积分10
8秒前
典雅雪枫发布了新的文献求助10
9秒前
任婷完成签到,获得积分10
11秒前
12秒前
levy完成签到,获得积分10
12秒前
13秒前
你说发布了新的文献求助10
13秒前
独特乘云发布了新的文献求助10
14秒前
14秒前
独云发布了新的文献求助10
15秒前
调研昵称发布了新的文献求助10
18秒前
爆米花应助樊小雾采纳,获得10
19秒前
Mingyue123完成签到,获得积分10
20秒前
乐乐应助levy采纳,获得10
21秒前
义气觅双发布了新的文献求助10
21秒前
贰鸟应助雷雷雷采纳,获得20
22秒前
田様应助科研小菜采纳,获得10
23秒前
23秒前
25秒前
晨光中完成签到,获得积分10
27秒前
28秒前
HEIKU应助典雅雪枫采纳,获得20
28秒前
30秒前
Doctor_G发布了新的文献求助10
30秒前
31秒前
lixiao应助hhh采纳,获得10
31秒前
江璃完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
The SAGE Handbook of Qualitative Research 800
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786078
关于积分的说明 7774957
捐赠科研通 2441899
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825