A deep feature extraction approach for bearing fault diagnosis based on multi-scale convolutional autoencoder and generative adversarial networks

自编码 计算机科学 模式识别(心理学) 分类器(UML) 人工智能 断层(地质) 编码器 特征提取 卷积神经网络 特征学习 人工神经网络 发电机(电路理论) 方位(导航) 深度学习 功率(物理) 物理 量子力学 地震学 地质学 操作系统
作者
Hu Zy,TR Han,Jıanpeng Bian,Wang Zw,L Chen,WL Zhang,XW Kong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (6): 065013-065013 被引量:6
标识
DOI:10.1088/1361-6501/ac56f0
摘要

Abstract The vibration signal of a bearing is closely related to its fault. The quality of the features extracted from the signal has a great impact on the accuracy of fault diagnosis. In this paper, a new method combining multi-scale autoencoder (AE) and generative adversarial network is proposed to extract the depth-sensitive features of the signal, and unite with the classifier for fault diagnosis. The AE is used as the generator (i.e. the generator is composed of encoder and decoder), and the idea of confrontation and reconstruction is used for training. The better the training of the generator, the better the training of the encoder, which means that the extracted feature of the encoder (the output of the encoder) is better. Then take these features as new inputs, send them to the classifier for classification, and finally get the fault type. This method solves the problems of weak representation and over-reliance on professional knowledge of the traditional method for bearing fault diagnosis. Meanwhile, compared with most existing neural network models for fault diagnosis, it has higher accuracy, especially in difficult diagnosis tasks. To further verify the effectiveness of the proposed model, a bearing test rig is established, and the collected data are used for fault diagnosis to prove the superiority of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
刚刚
刚刚
xsss完成签到,获得积分10
刚刚
刚刚
liao举报铁瓜李求助涉嫌违规
1秒前
nn应助ChenYe采纳,获得10
2秒前
2秒前
研友_8oYg4n完成签到,获得积分10
2秒前
lemmon完成签到,获得积分10
2秒前
852应助吉里吉利采纳,获得10
3秒前
统统闪开完成签到,获得积分10
3秒前
威武的大象完成签到,获得积分20
3秒前
3秒前
刘威完成签到,获得积分10
3秒前
yurenxiaojie完成签到,获得积分10
3秒前
4秒前
4秒前
CodeCraft应助Alpha采纳,获得10
5秒前
6秒前
GGDog发布了新的文献求助10
6秒前
科研通AI6应助统统闪开采纳,获得10
7秒前
空明流毓完成签到,获得积分10
7秒前
xz关闭了xz文献求助
8秒前
2338846065发布了新的文献求助10
8秒前
lemmon发布了新的文献求助10
8秒前
薛雨佳发布了新的文献求助10
8秒前
LJL完成签到,获得积分10
9秒前
小木发布了新的文献求助10
9秒前
fenghao发布了新的文献求助10
10秒前
彭于晏应助兰兰不懒采纳,获得10
10秒前
无辜丹翠完成签到 ,获得积分10
10秒前
11秒前
安河桥发布了新的文献求助10
12秒前
wangmengcheng完成签到,获得积分10
12秒前
12秒前
Ace完成签到,获得积分10
13秒前
14秒前
Ava应助little_forest采纳,获得10
15秒前
皖医梁朝伟完成签到 ,获得积分0
15秒前
Lara完成签到,获得积分10
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587041
求助须知:如何正确求助?哪些是违规求助? 4670226
关于积分的说明 14781682
捐赠科研通 4621791
什么是DOI,文献DOI怎么找? 2531111
邀请新用户注册赠送积分活动 1499869
关于科研通互助平台的介绍 1468002