A deep feature extraction approach for bearing fault diagnosis based on multi-scale convolutional autoencoder and generative adversarial networks

自编码 计算机科学 模式识别(心理学) 分类器(UML) 人工智能 断层(地质) 编码器 特征提取 卷积神经网络 特征学习 人工神经网络 发电机(电路理论) 方位(导航) 深度学习 功率(物理) 物理 量子力学 地震学 地质学 操作系统
作者
Hu Zy,TR Han,Jıanpeng Bian,Wang Zw,L Chen,WL Zhang,XW Kong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (6): 065013-065013 被引量:6
标识
DOI:10.1088/1361-6501/ac56f0
摘要

Abstract The vibration signal of a bearing is closely related to its fault. The quality of the features extracted from the signal has a great impact on the accuracy of fault diagnosis. In this paper, a new method combining multi-scale autoencoder (AE) and generative adversarial network is proposed to extract the depth-sensitive features of the signal, and unite with the classifier for fault diagnosis. The AE is used as the generator (i.e. the generator is composed of encoder and decoder), and the idea of confrontation and reconstruction is used for training. The better the training of the generator, the better the training of the encoder, which means that the extracted feature of the encoder (the output of the encoder) is better. Then take these features as new inputs, send them to the classifier for classification, and finally get the fault type. This method solves the problems of weak representation and over-reliance on professional knowledge of the traditional method for bearing fault diagnosis. Meanwhile, compared with most existing neural network models for fault diagnosis, it has higher accuracy, especially in difficult diagnosis tasks. To further verify the effectiveness of the proposed model, a bearing test rig is established, and the collected data are used for fault diagnosis to prove the superiority of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静的映秋完成签到,获得积分10
1秒前
1秒前
超人完成签到,获得积分10
1秒前
我是老大应助饶天源采纳,获得10
2秒前
啤酒半斤发布了新的文献求助200
2秒前
4秒前
4秒前
bin发布了新的文献求助100
4秒前
鲤鱼依白完成签到 ,获得积分10
4秒前
领导范儿应助十四吉采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
任贱贱完成签到,获得积分20
7秒前
小马甲应助言木禾采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
简单喀秋莎完成签到,获得积分10
10秒前
10秒前
CodeCraft应助菠萝披萨采纳,获得10
10秒前
风趣绿竹完成签到,获得积分10
11秒前
傲娇的秋莲完成签到,获得积分20
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
小明发布了新的文献求助10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
天天快乐应助科研通管家采纳,获得30
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
无花果应助einspringen采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
yu发布了新的文献求助30
12秒前
12秒前
13秒前
Levan完成签到,获得积分10
13秒前
bamboo应助科研通管家采纳,获得20
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667