Multicenter and Multichannel Pooling GCN for Early AD Diagnosis Based on Dual-Modality Fused Brain Network

计算机科学 联营 人工智能 模式识别(心理学) 功能磁共振成像 分类器(UML) 图形 甲骨文公司 数据挖掘 机器学习 理论计算机科学 生物 软件工程 神经科学
作者
Xuegang Song,Feng Zhou,Alejandro F. Frangi,Jiuwen Cao,Xiaohua Xiao,Yi Lei,Tianfu Wang,Baiying Lei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 354-367 被引量:69
标识
DOI:10.1109/tmi.2022.3187141
摘要

For significant memory concern (SMC) and mild cognitive impairment (MCI), their classification performance is limited by confounding features, diverse imaging protocols, and limited sample size. To address the above limitations, we introduce a dual-modality fused brain connectivity network combining resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), and propose three mechanisms in the current graph convolutional network (GCN) to improve classifier performance. First, we introduce a DTI-strength penalty term for constructing functional connectivity networks. Stronger structural connectivity and bigger structural strength diversity between groups provide a higher opportunity for retaining connectivity information. Second, a multi-center attention graph with each node representing a subject is proposed to consider the influence of data source, gender, acquisition equipment, and disease status of those training samples in GCN. The attention mechanism captures their different impacts on edge weights. Third, we propose a multi-channel mechanism to improve filter performance, assigning different filters to features based on feature statistics. Applying those nodes with low-quality features to perform convolution would also deteriorate filter performance. Therefore, we further propose a pooling mechanism, which introduces the disease status information of those training samples to evaluate the quality of nodes. Finally, we obtain the final classification results by inputting the multi-center attention graph into the multi-channel pooling GCN. The proposed method is tested on three datasets (i.e., an ADNI 2 dataset, an ADNI 3 dataset, and an in-house dataset). Experimental results indicate that the proposed method is effective and superior to other related algorithms, with a mean classification accuracy of 93.05% in our binary classification tasks. Our code is available at: https://github.com/Xuegang-S .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Winks完成签到,获得积分10
刚刚
刚刚
科研通AI5应助CY采纳,获得10
1秒前
1秒前
小叮当完成签到,获得积分10
1秒前
2秒前
谦让乐曲发布了新的文献求助10
2秒前
3秒前
苏州小北发布了新的文献求助10
3秒前
3秒前
Aisha发布了新的文献求助10
4秒前
Hello应助xibei采纳,获得10
5秒前
Maxine完成签到,获得积分10
5秒前
田様应助你说你要干干干采纳,获得10
6秒前
6秒前
情怀应助Jke采纳,获得10
6秒前
6秒前
myyyyy发布了新的文献求助10
6秒前
7秒前
三余完成签到,获得积分10
7秒前
7秒前
泽泽发布了新的文献求助10
8秒前
8秒前
weishen完成签到,获得积分0
9秒前
LILI李发布了新的文献求助30
9秒前
ChiDaiOLD完成签到,获得积分10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
10秒前
艾客科研完成签到,获得积分10
11秒前
李爱国应助科研欣路采纳,获得30
11秒前
12秒前
12秒前
冷裤de工头完成签到,获得积分20
13秒前
1234发布了新的文献求助10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769147
求助须知:如何正确求助?哪些是违规求助? 3314193
关于积分的说明 10171062
捐赠科研通 3029255
什么是DOI,文献DOI怎么找? 1662296
邀请新用户注册赠送积分活动 794827
科研通“疑难数据库(出版商)”最低求助积分说明 756421