Deep learning for change detection in remote sensing: a review

变更检测 遥感 深度学习 计算机科学 人工智能 环境科学 数据科学 地质学
作者
Ting Bai,Le Wang,Dameng Yin,Kaimin Sun,Yepei Chen,Wenzhuo Li,Deren Li
出处
期刊:Geo-spatial Information Science [Taylor & Francis]
卷期号:26 (3): 262-288 被引量:130
标识
DOI:10.1080/10095020.2022.2085633
摘要

A large number of publications have incorporated deep learning in the process of remote sensing change detection. In these Deep Learning Change Detection (DLCD) publications, deep learning methods have demonstrated their superiority over conventional change detection methods. However, the theoretical underpinnings of why deep learning improves the performance of change detection remain unresolved. As of today, few in-depth reviews have investigated the mechanisms of DLCD. Without such a review, five critical questions remain unclear. Does DLCD provide improved information representation for change detection? If so, how? How to select an appropriate DLCD method and why? How much does each type of change benefits from DLCD in terms of its performance? What are the major limitations of existing DLCD methods and what are the prospects for DLCD? To address these five questions, we reviewed according to the following strategies. We grouped the DLCD information assemblages into the four unique dimensions of remote sensing: spectral, spatial, temporal, and multi-sensor. For the extraction of information in each dimension, the difference between DLCD and conventional change detection methods was compared. We proposed a taxonomy of existing DLCD methods by dividing them into two distinctive pools: separate and coupled models. Their advantages, limitations, applicability, and performance were thoroughly investigated and explicitly presented. We examined the variations in performance between DLCD and conventional change detection. We depicted two limitations of DLCD, i.e. training sample and hardware and software dilemmas. Based on these analyses, we identified directions for future developments. As a result of our review, we found that DLCD's advantages over conventional change detection can be attributed to three factors: improved information representation; improved change detection methods; and performance enhancements. DLCD has to surpass the limitations with regard to training samples and computing infrastructure. We envision this review can boost developments of deep learning in change detection applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梧桐完成签到,获得积分10
刚刚
殷勤的紫槐完成签到,获得积分10
刚刚
刚刚
上官若男应助酷炫的不悔采纳,获得10
2秒前
OsHTAS完成签到,获得积分10
2秒前
邓佳鑫Alan应助laola采纳,获得10
3秒前
葡萄炖雪梨完成签到 ,获得积分10
3秒前
水瓶鱼完成签到,获得积分0
3秒前
daidai完成签到,获得积分10
4秒前
学茶小白完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
7秒前
抽屉里的猫完成签到,获得积分10
9秒前
西西歪完成签到,获得积分20
9秒前
腾腾完成签到 ,获得积分10
10秒前
1111完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
酷炫的不悔完成签到,获得积分10
10秒前
余鹰完成签到,获得积分10
11秒前
11秒前
时尚俊驰完成签到 ,获得积分20
11秒前
平常安雁完成签到 ,获得积分10
11秒前
喜悦香萱发布了新的文献求助10
11秒前
刻苦的秋玲完成签到,获得积分10
11秒前
聪明的宛菡完成签到,获得积分10
12秒前
meng完成签到,获得积分10
12秒前
fqk完成签到,获得积分10
12秒前
jyjy完成签到,获得积分10
12秒前
孟子发布了新的文献求助10
15秒前
Air完成签到 ,获得积分10
15秒前
swy完成签到,获得积分10
16秒前
寂寞的小乌龟完成签到,获得积分10
17秒前
17秒前
心流完成签到 ,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助150
18秒前
hdbys完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661181
求助须知:如何正确求助?哪些是违规求助? 3222298
关于积分的说明 9744486
捐赠科研通 2931912
什么是DOI,文献DOI怎么找? 1605300
邀请新用户注册赠送积分活动 757805
科研通“疑难数据库(出版商)”最低求助积分说明 734569