Deep learning for change detection in remote sensing: a review

变更检测 深度学习 机器学习 计算机科学 代表(政治) 人工智能 数据科学 政治 政治学 法学
作者
Ting Bai,Le Wang,Dameng Yin,Kaimin Sun,Yepei Chen,Wenzhuo Li,Deren Li
出处
期刊:Geo-spatial Information Science [Informa]
卷期号:26 (3): 262-288 被引量:76
标识
DOI:10.1080/10095020.2022.2085633
摘要

A large number of publications have incorporated deep learning in the process of remote sensing change detection. In these Deep Learning Change Detection (DLCD) publications, deep learning methods have demonstrated their superiority over conventional change detection methods. However, the theoretical underpinnings of why deep learning improves the performance of change detection remain unresolved. As of today, few in-depth reviews have investigated the mechanisms of DLCD. Without such a review, five critical questions remain unclear. Does DLCD provide improved information representation for change detection? If so, how? How to select an appropriate DLCD method and why? How much does each type of change benefits from DLCD in terms of its performance? What are the major limitations of existing DLCD methods and what are the prospects for DLCD? To address these five questions, we reviewed according to the following strategies. We grouped the DLCD information assemblages into the four unique dimensions of remote sensing: spectral, spatial, temporal, and multi-sensor. For the extraction of information in each dimension, the difference between DLCD and conventional change detection methods was compared. We proposed a taxonomy of existing DLCD methods by dividing them into two distinctive pools: separate and coupled models. Their advantages, limitations, applicability, and performance were thoroughly investigated and explicitly presented. We examined the variations in performance between DLCD and conventional change detection. We depicted two limitations of DLCD, i.e. training sample and hardware and software dilemmas. Based on these analyses, we identified directions for future developments. As a result of our review, we found that DLCD’s advantages over conventional change detection can be attributed to three factors: improved information representation; improved change detection methods; and performance enhancements. DLCD has to surpass the limitations with regard to training samples and computing infrastructure. We envision this review can boost developments of deep learning in change detection applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ynn发布了新的文献求助10
1秒前
1秒前
羊羊羊发布了新的文献求助10
1秒前
2秒前
鲁路修完成签到,获得积分10
2秒前
斯文败类应助雨季采纳,获得10
2秒前
emergency完成签到,获得积分10
2秒前
3秒前
3秒前
嗯哼应助AAA采纳,获得20
3秒前
李牛牛完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
輝23发布了新的文献求助10
7秒前
毕十三发布了新的文献求助10
7秒前
luoshi完成签到 ,获得积分10
7秒前
8秒前
8秒前
10秒前
10秒前
zgd发布了新的文献求助10
10秒前
11秒前
Allerga发布了新的文献求助10
11秒前
zlp发布了新的文献求助10
12秒前
忧心的峻熙完成签到,获得积分10
12秒前
害羞文博发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
16秒前
17秒前
井野浮应助夹心采纳,获得10
17秒前
17秒前
韩小寒qqq完成签到,获得积分10
17秒前
布鲁鲁发布了新的文献求助20
18秒前
张张发布了新的文献求助10
18秒前
18秒前
闪闪凝冬完成签到,获得积分10
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229089
求助须知:如何正确求助?哪些是违规求助? 2876882
关于积分的说明 8196780
捐赠科研通 2544248
什么是DOI,文献DOI怎么找? 1374200
科研通“疑难数据库(出版商)”最低求助积分说明 646906
邀请新用户注册赠送积分活动 621693