A novel hybrid robust architecture for automatic screening of glaucoma using fundus photos, built on feature selection and machine learning‐nature driven computing

计算机科学 人工智能 特征选择 模式识别(心理学) 支持向量机 单变量 分割 特征提取 青光眼 眼底(子宫) 特征向量 分类器(UML) 水准点(测量) 交叉验证 机器学习 多元统计 眼科 地理 医学 大地测量学
作者
Law Kumar Singh,Munish Khanna,Shankar Thawkar
出处
期刊:Expert Systems [Wiley]
卷期号:39 (10) 被引量:16
标识
DOI:10.1111/exsy.13069
摘要

Abstract Glaucoma is a leading cause of permanent vision loss. Early detection and treatment of this infection is critical for recovery and slowing the progression of vision loss. An efficient novel system focused on customized particle swarm optimization (CPSO) and four state‐of‐the‐art machine‐learning classifiers is proposed to boost prediction performance. This interconnected architecture detects glaucoma through five main phases: (1) pre‐processing, (2) segmentation, (3) feature extraction, (4) finding the best scored features, and (5) classification using the proposed CPSO‐machine learning dependent classifier. The subject images belong to the publically available benchmark Digital Retinal Images for Optic Nerve Segmentation retinal fundus data set. Rather than focusing on the initial 20 extracted features of the retinal fundus, half of the critical features are chosen to form a feature vector based on scores provided by the univariate method and the feature importance method separately. These features are fed into this system for training, testing, and multiple sets of results are created as a result of multiple combinations of CPSO and supervised machine‐learning classifiers. These result sets are evaluated using six efficiency metrics. According to the simulation results, the best output is recorded when a univariate selected feature vector is fed into the CPSO—K‐nearest neighbour dependent hybrid method. This model outperformed other models with a maximum accuracy of 0.99, a specificity of 0.96, a sensitivity of 0.97, a precision of 0.97, an F1‐score of 0.97, and a Kappa of 0.94. A fivefold cross‐validation method is used to derive the values. This research would help to achieve good levels of glaucoma care since the proposed system is excellent at distinguishing between stable and glaucomatous eyes. For ophthalmologists, this new technique can be used as second opinion for improving diagnostic accuracy for glaucoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TAboo发布了新的文献求助10
刚刚
nan完成签到,获得积分10
1秒前
深情安青应助夏冰采纳,获得10
1秒前
1秒前
怎么说应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
wu8577应助科研通管家采纳,获得10
1秒前
1秒前
LEMONS应助科研通管家采纳,获得10
1秒前
鲤鱼鸽子应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
李李应助科研通管家采纳,获得10
2秒前
2秒前
怎么说应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
FashionBoy应助愤怒的小鸽子采纳,获得10
2秒前
羌活发布了新的文献求助10
2秒前
怎么说应助科研通管家采纳,获得10
3秒前
墨宁发布了新的文献求助10
3秒前
tayyy发布了新的文献求助30
3秒前
LEMONS应助科研通管家采纳,获得10
3秒前
英俊的铭应助愉快盼曼采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
LEMONS应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
李健应助车大花采纳,获得10
4秒前
4秒前
万能图书馆应助yuntong采纳,获得10
4秒前
在水一方应助ZMY采纳,获得10
4秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344