Semi-Supervised Learning for Automatic Atrial Fibrillation Detection in 24-Hour Holter Monitoring

人工智能 计算机科学 深度学习 人工神经网络 机器学习 心房颤动 模式识别(心理学) 监督学习 医学 心脏病学
作者
Peng Zhang,Yuting Chen,Fan Lin,Sifan Wu,Xiaoyun Yang,Qiang Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 3791-3801 被引量:28
标识
DOI:10.1109/jbhi.2022.3173655
摘要

Paroxysmal atrial fibrillation (AF) is generally diagnosed by long-term dynamic electrocardiogram (ECG) monitoring. Identifying AF episodes from long-term ECG data can place a heavy burden on clinicians. Many machine-learning-based automatic AF detection methods have been proposed to solve this issue. However, these methods require numerous annotated data to train the model, and the annotation of AF in long-term ECG is extremely time-consuming. Reducing the demand for labeled data can effectively improve the clinical practicability of automatic AF detection methods. In this study, we developed a novel semi-supervised learning method that generated modified low-entropy labels of unlabeled samples for training a deep learning model to automatically detect paroxysmal AF in 24 h Holter monitoring data. Our method employed a 1D CNN-LSTM neural network with RR intervals as input and used few labeled training data with numerous unlabeled data for training the neural network. This method was evaluated using a 24 h Holter monitoring dataset collected from 1000 paroxysmal AF patients. Using labeled samples from only 10 patients for model training, our method achieved a sensitivity of 97.8%, specificity of 97.9%, and accuracy of 97.9% in five-fold cross-validation. Compared to the supervised learning method with complete labeled samples, the detection accuracy of our method was only 0.5% lower, while the workload of data annotation was significantly reduced by more than 98%. In general, this is the first study to apply semi-supervised learning techniques for automatic AF detection using ECG. Our method can effectively reduce the demand for AF data annotations and can improve the clinical practicability of automatic AF detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Samming完成签到 ,获得积分10
刚刚
1秒前
1秒前
ccerr完成签到,获得积分10
3秒前
ren完成签到 ,获得积分10
4秒前
pxh发布了新的文献求助10
4秒前
正直的湘关注了科研通微信公众号
6秒前
远志发布了新的文献求助10
7秒前
包容的凛完成签到,获得积分10
8秒前
9秒前
思源应助UWUTUYU采纳,获得10
9秒前
似水流年发布了新的文献求助20
15秒前
16秒前
生动的冰岚完成签到,获得积分10
18秒前
123完成签到,获得积分10
19秒前
科研通AI5应助咿咿呀呀采纳,获得10
19秒前
19秒前
Akim应助ONE采纳,获得10
20秒前
充电宝应助6789采纳,获得10
22秒前
武广敏完成签到,获得积分10
22秒前
24秒前
复杂尔蓝发布了新的文献求助10
26秒前
29秒前
畅快莹芝完成签到,获得积分10
29秒前
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
wanci应助科研通管家采纳,获得10
29秒前
30秒前
大个应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得50
30秒前
桐桐应助科研通管家采纳,获得10
30秒前
深情安青应助Steven采纳,获得10
31秒前
31秒前
在水一方应助US采纳,获得10
32秒前
32秒前
咿咿呀呀发布了新的文献求助10
34秒前
淡淡的诗兰应助zxw采纳,获得30
36秒前
37秒前
38秒前
TTT完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760769
求助须知:如何正确求助?哪些是违规求助? 3304586
关于积分的说明 10130417
捐赠科研通 3018464
什么是DOI,文献DOI怎么找? 1657649
邀请新用户注册赠送积分活动 791639
科研通“疑难数据库(出版商)”最低求助积分说明 754529