Enhanced adsorption and photocatalytic removal of PFOA from water by F-functionalized MOF with in-situ-growth TiO2: Regulation of electron density and bandgap

光催化 吸附 原位 带隙 化学工程 电子 化学 材料科学 纳米技术 光化学 催化作用 光电子学 物理化学 有机化学 物理 工程类 量子力学
作者
Zheng Kong,Lun Lu,Chao Zhu,Junjie Xu,Qile Fang,Renlan Liu,Yi Shen
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:297: 121449-121449 被引量:58
标识
DOI:10.1016/j.seppur.2022.121449
摘要

• F-TiO 2 @MIL-125 was adsorption-photocatalytic dual-functional. • The linked fluorine groups acted as primary adsorption sites for PFOA. • The in-situ growth TiO 2 had better synergy with MOF in photocatalysis. • The enhanced degradation was due to narrowed bandgap and electron density variation. • F-TiO 2 @MIL-125 exhibited stability and universality in different water applications. PFOA has caused enormous environmental risks with recalcitrance, toxicity, and bioaccumulation, while the degradation of PFOA is still a challenging topic related to the high energy of C F bonds. However, the conventional methods such as biological oxidation, electrochemical oxidation and membrane separation have their own drawbacks. Actually, adsorption-photocatalysis is considered a potential treatment due to effectiveness and thoroughness. Instead of preparing the composite material by adding TiO 2 , the method to in-situ grow TiO 2 in the MOF (MIL-125(Ti)) was carried out, which achieved narrowed band gap and improved the photoresponse ability, simultaneously. Furthermore, the surface F-functionalized MOF provided more available special adsorption sites for PFOA enrichment. Linked fluorine groups not only improved the adsorption capacity (185.151 μmol/g) but also enhanced the photocatalytic rate (1.221 E −4 /s) by altering the electronic density of VB and CB. The constructed F-TiO 2 @MIL-125 stepwise degraded PFOA through a dominant ·OH attack pathway and maintained the oxidize ability of h + to PFOA. As a bifunctional material for adsorption and photocatalysis, F-TiO 2 @MIL-125 was able to be applied in various water environments repeatedly, which has unlimited environmental application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
上进生发布了新的文献求助10
2秒前
小二郎应助直率的羊青采纳,获得10
3秒前
3秒前
霍华淞发布了新的文献求助10
4秒前
4秒前
米儿完成签到,获得积分10
4秒前
寒崽发布了新的文献求助10
4秒前
充电宝应助Candy采纳,获得10
5秒前
5秒前
5秒前
6秒前
嘟嘟嘟发布了新的文献求助10
6秒前
6秒前
7秒前
Dawn发布了新的文献求助10
7秒前
大仙完成签到,获得积分10
7秒前
土豆魔王发布了新的文献求助10
7秒前
athena发布了新的文献求助30
7秒前
情怀应助jgpiao采纳,获得10
7秒前
沉迷学习完成签到,获得积分10
9秒前
开放飞阳完成签到 ,获得积分10
9秒前
9秒前
颛颛发布了新的文献求助10
9秒前
丑麒发布了新的文献求助10
10秒前
qmx发布了新的文献求助10
10秒前
漂亮忆南发布了新的文献求助10
11秒前
11秒前
霍华淞完成签到,获得积分20
11秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得100
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
云_123发布了新的文献求助10
13秒前
852应助科研通管家采纳,获得10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847