BAFinder: A Software for Unknown Bile Acid Identification Using Accurate Mass LC-MS/MS in Positive and Negative Modes

化学 胆汁酸 鉴定(生物学) 质谱法 色谱法 氨基酸 生物化学 植物 生物
作者
Yan Ma,Yang Cao,Xiaocui Song,Yuanying Zhang,Jing Li,Yankai Wang,Xiaoqing Wu,Xiangbing Qi
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (16): 6242-6250 被引量:13
标识
DOI:10.1021/acs.analchem.1c05648
摘要

Most LC-MS based bile acid analyses target common bile acids. The identification of unknown bile acids remains challenging in untargeted experiments. Here, a software named BAFinder was developed to improve the identification of unknown bile acids from accurate mass LC-MS/MS data in both the positive and negative ESI modes. A wide variety of bile acid structures were covered in BAFinder, including oxidized bile acids and sugar conjugates that were often ignored. The annotation of unknown bile acids was based on a thorough investigation of MS/MS fragmentation patterns of 84 bile acid reference standards in both modes. Specifically, BAFinder took the peak alignment result and MS/MS spectra, grouped candidate features in positive and negative modes, searched their representative MS/MS spectra against a MS/MS library, and used characteristic product ions and neutral losses to annotate bile acids not covered in the library. Finally, the number of hydroxyl groups and double bonds, conjugation, and isomer information of bile acids were reported with four different levels of annotation confidence. The use of BAFinder was demonstrated through successful application to the analysis of human plasma and urine samples, in which a total of 112 and 244 bile acids were annotated and 75 and 111 of them were confirmed with standards or synthesized compounds, respectively. The software is freely available at https://bafinder.github.io/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助cuckoo采纳,获得10
1秒前
科目三应助LucienS采纳,获得10
2秒前
2秒前
3秒前
佩佩完成签到 ,获得积分10
4秒前
碧蓝老虎发布了新的文献求助10
4秒前
小琦琦发布了新的文献求助10
4秒前
6秒前
彭于晏应助kakafan采纳,获得10
8秒前
YQP发布了新的文献求助10
9秒前
小小苏荷完成签到,获得积分10
9秒前
9秒前
白嶷发布了新的文献求助10
10秒前
11秒前
LucienS完成签到,获得积分10
11秒前
小蘑菇应助jm采纳,获得10
11秒前
赘婿应助拔丝香芋采纳,获得10
13秒前
佳佳应助北北采纳,获得10
13秒前
hhh完成签到,获得积分10
13秒前
SciGPT应助lpp_采纳,获得10
14秒前
寒冷天亦发布了新的文献求助10
15秒前
瘦瘦的铅笔完成签到 ,获得积分10
16秒前
16秒前
DYW发布了新的文献求助10
16秒前
16秒前
16秒前
沉默的宛筠完成签到,获得积分10
16秒前
西音完成签到,获得积分10
17秒前
小二郎应助檀a采纳,获得10
17秒前
18秒前
顾矜应助默lk采纳,获得10
18秒前
科研鸟发布了新的文献求助30
19秒前
痴痴的噜完成签到,获得积分10
19秒前
怕黑的静蕾应助小琦琦采纳,获得10
19秒前
Fanzhixiang关注了科研通微信公众号
20秒前
Wmmmmm完成签到,获得积分10
21秒前
23秒前
kakafan发布了新的文献求助10
23秒前
研友_LpvElZ完成签到,获得积分10
23秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420