Differentiation of eosinophilic and non-eosinophilic chronic rhinosinusitis on preoperative computed tomography using deep learning

分割 可解释性 医学 人工智能 鼻息肉 接收机工作特性 嗜酸性 放射科 模式识别(心理学) 核医学 计算机科学 病理 内科学
作者
Hong‐Li Hua,Song Li,Yu Xu,Shiming Chen,Yonggang Kong,Rui Yang,Yuqin Deng,Zezhang Tao
出处
期刊:Authorea - Authorea
标识
DOI:10.22541/au.164972524.42674152/v1
摘要

Objective: This study aimed to develop deep learning (DL) models for differentiating between eosinophilic chronic rhinosinusitis (ECRS) and non-eosinophilic chronic rhinosinusitis (NECRS) on preoperative computed tomography (CT). Methods: A total of 878 chronic rhinosinusitis (CRS) patients undergoing nasal endoscopic surgery were included. Axial spiral CT images were pre-processed and used to build the dataset. Two semantic segmentation models based on U-net and Deeplabv3 were trained to segment sinus area in CT images. All patient images were segmented using the better-performing segmentation model and used for training and validation of the transferred efficientnet_b0, resnet50, inception_resnet_v2, and Xception neural networks. Additionally, we evaluated the performances of the models trained using each image and each patient as a unit. The precision of each model was assessed based on the receiver operating characteristic curve. Further, we analyzed the confusion matrix, accuracy, and interpretability of each model. Results: The Dice coefficients of U-net and Deeplabv3 were 0.953 and 0.961, respectively. The average area under the curve and mean accuracy values of the four networks were 0.848 and 0.762 for models trained using a single image as a unit, while the corresponding values for models trained using each patient as a unit were 0.853 and 0.893, respectively. The generated Grad-Cams showed good interpretability. Conclusion: Combining semantic segmentation with classification networks could effectively distinguish between patients with ECRS and NECRS based on preoperative sinus CT images. Furthermore, labeling each patient to build a dataset for classification may be more reliable than labeling each medical image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祁醉发布了新的文献求助30
刚刚
在途中完成签到,获得积分10
1秒前
喜气杨杨完成签到 ,获得积分10
1秒前
猪猪hero发布了新的文献求助10
3秒前
放牧山水发布了新的文献求助30
4秒前
爆米花应助LLL采纳,获得10
5秒前
黄晓悦完成签到,获得积分10
5秒前
不高兴完成签到,获得积分10
8秒前
欧阳正义发布了新的文献求助10
11秒前
所所应助bjf555采纳,获得10
11秒前
13秒前
小巧的怜晴完成签到,获得积分10
16秒前
xuxuxuxu完成签到 ,获得积分10
16秒前
尹尹尹发布了新的文献求助10
19秒前
吱吱吱完成签到,获得积分10
20秒前
20秒前
Hello应助Zxxz采纳,获得10
20秒前
23秒前
23秒前
张晓飞完成签到,获得积分10
23秒前
24秒前
体贴花卷发布了新的文献求助10
27秒前
在写了发布了新的文献求助10
28秒前
张晓飞发布了新的文献求助10
29秒前
张张完成签到 ,获得积分10
29秒前
搜集达人应助尹尹尹采纳,获得10
31秒前
32秒前
月林旭完成签到 ,获得积分20
36秒前
36秒前
DragonT完成签到,获得积分10
37秒前
37秒前
37秒前
38秒前
39秒前
bjf555发布了新的文献求助10
40秒前
shengchang88发布了新的文献求助10
40秒前
飘逸小懒猪应助luoluo采纳,获得10
42秒前
远航发布了新的文献求助10
43秒前
43秒前
星辰大海应助陶醉的蜜蜂采纳,获得10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432