Differentiation of eosinophilic and non-eosinophilic chronic rhinosinusitis on preoperative computed tomography using deep learning

分割 可解释性 医学 人工智能 鼻息肉 接收机工作特性 嗜酸性 放射科 模式识别(心理学) 核医学 计算机科学 病理 内科学
作者
Hong‐Li Hua,Song Li,Yu Xu,Shiming Chen,Yonggang Kong,Rui Yang,Yuqin Deng,Zezhang Tao
出处
期刊:Authorea - Authorea
标识
DOI:10.22541/au.164972524.42674152/v1
摘要

Objective: This study aimed to develop deep learning (DL) models for differentiating between eosinophilic chronic rhinosinusitis (ECRS) and non-eosinophilic chronic rhinosinusitis (NECRS) on preoperative computed tomography (CT). Methods: A total of 878 chronic rhinosinusitis (CRS) patients undergoing nasal endoscopic surgery were included. Axial spiral CT images were pre-processed and used to build the dataset. Two semantic segmentation models based on U-net and Deeplabv3 were trained to segment sinus area in CT images. All patient images were segmented using the better-performing segmentation model and used for training and validation of the transferred efficientnet_b0, resnet50, inception_resnet_v2, and Xception neural networks. Additionally, we evaluated the performances of the models trained using each image and each patient as a unit. The precision of each model was assessed based on the receiver operating characteristic curve. Further, we analyzed the confusion matrix, accuracy, and interpretability of each model. Results: The Dice coefficients of U-net and Deeplabv3 were 0.953 and 0.961, respectively. The average area under the curve and mean accuracy values of the four networks were 0.848 and 0.762 for models trained using a single image as a unit, while the corresponding values for models trained using each patient as a unit were 0.853 and 0.893, respectively. The generated Grad-Cams showed good interpretability. Conclusion: Combining semantic segmentation with classification networks could effectively distinguish between patients with ECRS and NECRS based on preoperative sinus CT images. Furthermore, labeling each patient to build a dataset for classification may be more reliable than labeling each medical image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒小刺猬完成签到,获得积分10
1秒前
mq发布了新的文献求助10
1秒前
2秒前
2秒前
Niar完成签到 ,获得积分10
2秒前
隐形曼青应助yu采纳,获得10
2秒前
耳东陈完成签到 ,获得积分10
3秒前
vidgers完成签到 ,获得积分10
3秒前
朱朱发布了新的文献求助10
4秒前
4秒前
1128完成签到,获得积分10
4秒前
陌上花开完成签到,获得积分0
5秒前
小代完成签到,获得积分10
5秒前
5秒前
SciGPT应助迷路的山菡采纳,获得10
7秒前
领导范儿应助libra采纳,获得10
7秒前
8秒前
曹中明发布了新的文献求助10
8秒前
8秒前
mathmotive完成签到,获得积分10
9秒前
LVVVB完成签到,获得积分10
9秒前
Justtry完成签到,获得积分10
10秒前
旺仔完成签到,获得积分20
10秒前
小爽完成签到,获得积分10
10秒前
不舍天真完成签到,获得积分10
11秒前
ECHO完成签到,获得积分10
11秒前
眼泪成诗发布了新的文献求助10
13秒前
喜悦的易槐完成签到,获得积分20
13秒前
青青草原图图完成签到,获得积分20
13秒前
忆之完成签到,获得积分10
13秒前
肖礼成完成签到,获得积分10
13秒前
六号线关注了科研通微信公众号
13秒前
旺仔发布了新的文献求助10
14秒前
星辰大海应助qiao采纳,获得30
14秒前
DQ8733完成签到,获得积分10
15秒前
15秒前
斯文败类应助小代采纳,获得10
15秒前
duchangzheng完成签到,获得积分10
16秒前
17秒前
bob完成签到 ,获得积分10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234976
求助须知:如何正确求助?哪些是违规求助? 2881202
关于积分的说明 8219628
捐赠科研通 2548961
什么是DOI,文献DOI怎么找? 1378079
科研通“疑难数据库(出版商)”最低求助积分说明 648121
邀请新用户注册赠送积分活动 623570