慢性阻塞性肺病
基因敲除
下调和上调
血管生成
细胞凋亡
医学
血管通透性
调节器
甲基化
癌症研究
细胞生物学
化学
免疫学
生物
病理
内科学
基因
生物化学
作者
Xiaolan Guo,Yuyin Lin,Yingnan Lin,Yue Zhong,Hongjiao Yu,Yibin Huang,Jingwen Yang,Ying Cai,FengDong Liu,Yuanyuan Li,Qianqian Zhang,Jianwei Dai
标识
DOI:10.1016/j.envpol.2022.119115
摘要
Fine particulate matter (PM2.5) exposure is a significant cause of chronic obstructive pulmonary disease (COPD), but the detailed mechanisms involved in COPD remain unclear. In this study, we established PM2.5-induced COPD rat models and showed that PM2.5 induced pulmonary microvascular injury via accelerating vascular endothelial apoptosis, increasing vascular permeability, and reducing angiogenesis, thereby contributing to COPD development. Moreover, microvascular injury in COPD was validated by measurements of plasma endothelial microparticles (EMPs) and serum VEGF in COPD patients. We then performed m6A sequencing, which confirmed that altered N6-methyladenosine (m6A) modification was induced by PM2.5 exposure. The results of a series of experiments demonstrated that the expression of methyltransferase-like protein 16 (METTL16), an m6A regulator, was upregulated in PM2.5-induced COPD rats, while the expression of other regulators did not differ upon PM2.5-induction. To clarify the regulatory effect of METTL16-mediated m6A modification induced by PM2.5 on pulmonary microvascular injury, cell apoptosis, permeability, and tube formation, the m6A level in METTL16-knockdown pulmonary microvascular endothelial cells (PMVECs) was evaluated, and the target genes of METTL16 were identified from a set of the differentially expressed and m6A-methylated genes associated with vascular injury and containing predicted sites of METTL16 methylation. The results showed that Sulfatase 2 (Sulf2) and Cytohesin-1 (Cyth1) containing the predicted METTL16 methylation sites, exhibited higher m6A methylation and were downregulated after PM2.5 exposure. Further studies demonstrated that METTL16 may regulate Sulf2 expression via m6A modification and thereby contribute to PM2.5-induced microvascular injury. These findings not only provide a better understanding of the role played by m6A modification in PM2.5-induced microvascular injury, but also identify a new therapeutic target for COPD.
科研通智能强力驱动
Strongly Powered by AbleSci AI