骨溶解
基因敲除
炎症
NF-κB
信号转导
荧光素酶
小RNA
医学
癌症研究
化学
细胞生物学
内科学
生物
基因
生物化学
外科
转染
作者
Yaling Zhang,Qing Zhu,Qing Fang,Dongmei Yin,Yonghong Duan,Gang Xue,Nan Ma,Yuanzhen Cai,Ming He
标识
DOI:10.1016/j.injury.2022.03.022
摘要
Aseptic loosening after total hip replacement brings adverse health outcomes and increased risk for complications. The resorptive activity of inflammatory cells activated by the presence of wear-generated debris plays a critical role in debris-induced osteolysis. Previous studies indicate that the abnormally expressed LINC01534 plays a critical role in inflammatory responses. In this study, we aimed to elucidate the functional role and underlying mechanism of LINC01534 in debris-induced osteolysis. We first confirmed that LINC01534 was highly expressed in hip cartilage tissues from aseptic loosening patients. By using an IL-1β-induced inflammation model mimicking debris-induced osteolysis, we demonstrated that LINC01534 promoted IL-1β-induced inflammatory response in hip chondrocytes. Knockdown of LINC01534 inhibited the expression of inflammatory IL-6, IL-8, and TNF-α in hip chondrocytes. Our results showed that LINC01534 functioned as a competing endogenous RNA (ceRNA) by sponging miR-135b-5p in hip chondrocytes. Moreover, bioinformatics analysis and luciferase reporter assay demonstrated that CCHC-Type Zinc Finger Nucleic Acid Binding Protein (PTPRT) is a downstream target of miR-135b-5p. Knockdown of PTPRT attenuated the IL-1β-induced inflammatory responses in hip chondrocytes. In addition, we revealed that inhibition of miR-135b-5p or overexpression of PTPRT could antagonize the effects of LINC01534 knockdown on inflammation attenuation in hip chondrocytes. Mechanistically, we demonstrated that LINC01534/miR-135b-5p/PTPRT axis regulated the NF-κB signaling pathway in hip chondrocytes. Taken together, our findings suggest that LINC01534/miR-135b-5p/PTPRT axis might be a valuable therapeutic target for the treatment of debris-induced osteolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI