Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF

极限抗拉强度 抗压强度 人工神经网络 Boosting(机器学习) 机器学习 随机森林 多层感知器 支持向量机 计算机科学 人工智能 材料科学 复合材料
作者
Afnan Nafees,Sherbaz Khan,Muhammad Faisal Javed,Raid Alrowais,Abdeliazim Mustafa Mohamed,Abdullah Mohamed,Nikolai Vatin
出处
期刊:Polymers [MDPI AG]
卷期号:14 (8): 1583-1583 被引量:74
标识
DOI:10.3390/polym14081583
摘要

Increased population necessitates an expansion of infrastructure and urbanization, resulting in growth in the construction industry. A rise in population also results in an increased plastic waste, globally. Recycling plastic waste is a global concern. Utilization of plastic waste in concrete can be an optimal solution from recycling perspective in construction industry. As environmental issues continue to grow, the development of predictive machine learning models is critical. Thus, this study aims to create modelling tools for estimating the compressive and tensile strengths of plastic concrete. For predicting the strength of concrete produced with plastic waste, this research integrates machine learning algorithms (individual and ensemble techniques), including bagging and adaptive boosting by including weak learners. For predicting the mechanical properties, 80 cylinders for compressive strength and 80 cylinders for split tensile strength were casted and tested with varying percentages of irradiated plastic waste, either as of cement or fine aggregate replacement. In addition, a thorough and reliable database, including 320 compressive strength tests and 320 split tensile strength tests, was generated from existing literature. Individual, bagging and adaptive boosting models of decision tree, multilayer perceptron neural network, and support vector machines were developed and compared with modified learner model of random forest. The results implied that individual model response was enriched by utilizing bagging and boosting learners. A random forest with a modified learner algorithm provided the robust performance of the models with coefficient correlation of 0.932 for compressive strength and 0.86 for split tensile strength with the least errors. Sensitivity analyses showed that tensile strength models were least sensitive to water and coarse aggregates, while cement, silica fume, coarse aggregate, and age have a substantial effect on compressive strength models. To minimize overfitting errors and corroborate the generalized modelling result, a cross-validation K-Fold technique was used. Machine learning algorithms are used to predict mechanical properties of plastic concrete to promote sustainability in construction industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqqyy完成签到,获得积分0
1秒前
圣泽同学完成签到,获得积分10
1秒前
1秒前
华仔应助大力丹琴采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
木子发布了新的文献求助10
1秒前
2秒前
2秒前
nightgaunt发布了新的文献求助10
3秒前
第七班完成签到,获得积分10
3秒前
ll完成签到 ,获得积分10
3秒前
3秒前
蜂鸟5156完成签到,获得积分10
3秒前
科研通AI6应助123采纳,获得20
4秒前
2248388622完成签到,获得积分10
4秒前
852应助暴躁的豆芽采纳,获得10
5秒前
123发布了新的文献求助20
5秒前
安蓝发布了新的文献求助10
5秒前
5秒前
风雅发布了新的文献求助10
6秒前
欣慰元蝶应助shi采纳,获得10
6秒前
6秒前
6秒前
7秒前
粥粥发布了新的文献求助10
7秒前
笨笨熊发布了新的文献求助10
7秒前
炑屿发布了新的文献求助10
7秒前
7秒前
2248388622发布了新的文献求助10
7秒前
繁荣的冰香完成签到,获得积分10
8秒前
8秒前
wangermazi完成签到,获得积分0
8秒前
8秒前
jishao完成签到,获得积分10
8秒前
8秒前
jiw发布了新的文献求助10
9秒前
9秒前
1234556发布了新的文献求助30
10秒前
一刀完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656