Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF

极限抗拉强度 抗压强度 人工神经网络 Boosting(机器学习) 机器学习 随机森林 多层感知器 支持向量机 计算机科学 人工智能 材料科学 复合材料
作者
Afnan Nafees,Sherbaz Khan,Muhammad Faisal Javed,Raid Alrowais,Abdeliazim Mustafa Mohamed,Abdullah Mohamed,Nikolai Vatin
出处
期刊:Polymers [MDPI AG]
卷期号:14 (8): 1583-1583 被引量:74
标识
DOI:10.3390/polym14081583
摘要

Increased population necessitates an expansion of infrastructure and urbanization, resulting in growth in the construction industry. A rise in population also results in an increased plastic waste, globally. Recycling plastic waste is a global concern. Utilization of plastic waste in concrete can be an optimal solution from recycling perspective in construction industry. As environmental issues continue to grow, the development of predictive machine learning models is critical. Thus, this study aims to create modelling tools for estimating the compressive and tensile strengths of plastic concrete. For predicting the strength of concrete produced with plastic waste, this research integrates machine learning algorithms (individual and ensemble techniques), including bagging and adaptive boosting by including weak learners. For predicting the mechanical properties, 80 cylinders for compressive strength and 80 cylinders for split tensile strength were casted and tested with varying percentages of irradiated plastic waste, either as of cement or fine aggregate replacement. In addition, a thorough and reliable database, including 320 compressive strength tests and 320 split tensile strength tests, was generated from existing literature. Individual, bagging and adaptive boosting models of decision tree, multilayer perceptron neural network, and support vector machines were developed and compared with modified learner model of random forest. The results implied that individual model response was enriched by utilizing bagging and boosting learners. A random forest with a modified learner algorithm provided the robust performance of the models with coefficient correlation of 0.932 for compressive strength and 0.86 for split tensile strength with the least errors. Sensitivity analyses showed that tensile strength models were least sensitive to water and coarse aggregates, while cement, silica fume, coarse aggregate, and age have a substantial effect on compressive strength models. To minimize overfitting errors and corroborate the generalized modelling result, a cross-validation K-Fold technique was used. Machine learning algorithms are used to predict mechanical properties of plastic concrete to promote sustainability in construction industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助忆楠采纳,获得10
刚刚
1秒前
请叫我风吹麦浪应助PengHu采纳,获得30
2秒前
jjjjjj完成签到,获得积分10
2秒前
凝子老师发布了新的文献求助10
4秒前
4秒前
橙子fy16_发布了新的文献求助10
6秒前
cookie完成签到,获得积分10
6秒前
柒柒的小熊完成签到,获得积分10
7秒前
7秒前
Hello应助萌之痴痴采纳,获得10
8秒前
hahaer完成签到,获得积分10
10秒前
领导范儿应助失眠虔纹采纳,获得10
11秒前
12秒前
Owen应助凝子老师采纳,获得10
15秒前
15秒前
南宫炽滔完成签到 ,获得积分10
17秒前
17秒前
丘比特应助飞羽采纳,获得10
18秒前
沙拉发布了新的文献求助10
18秒前
19秒前
20秒前
椰子糖完成签到 ,获得积分10
21秒前
21秒前
ZHU完成签到,获得积分10
22秒前
阳阳发布了新的文献求助10
23秒前
Raymond应助雪山飞龙采纳,获得10
23秒前
kk发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
25秒前
26秒前
29秒前
果果瑞宁发布了新的文献求助10
29秒前
wewewew发布了新的文献求助10
29秒前
29秒前
打打应助沙拉采纳,获得10
29秒前
30秒前
诸笑白发布了新的文献求助10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849