Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF

极限抗拉强度 抗压强度 人工神经网络 Boosting(机器学习) 机器学习 随机森林 多层感知器 支持向量机 计算机科学 人工智能 材料科学 复合材料
作者
Afnan Nafees,Sherbaz Khan,Muhammad Faisal Javed,Raid Alrowais,Abdeliazim Mustafa Mohamed,Abdullah Mohamed,Nikolai Vatin
出处
期刊:Polymers [Multidisciplinary Digital Publishing Institute]
卷期号:14 (8): 1583-1583 被引量:74
标识
DOI:10.3390/polym14081583
摘要

Increased population necessitates an expansion of infrastructure and urbanization, resulting in growth in the construction industry. A rise in population also results in an increased plastic waste, globally. Recycling plastic waste is a global concern. Utilization of plastic waste in concrete can be an optimal solution from recycling perspective in construction industry. As environmental issues continue to grow, the development of predictive machine learning models is critical. Thus, this study aims to create modelling tools for estimating the compressive and tensile strengths of plastic concrete. For predicting the strength of concrete produced with plastic waste, this research integrates machine learning algorithms (individual and ensemble techniques), including bagging and adaptive boosting by including weak learners. For predicting the mechanical properties, 80 cylinders for compressive strength and 80 cylinders for split tensile strength were casted and tested with varying percentages of irradiated plastic waste, either as of cement or fine aggregate replacement. In addition, a thorough and reliable database, including 320 compressive strength tests and 320 split tensile strength tests, was generated from existing literature. Individual, bagging and adaptive boosting models of decision tree, multilayer perceptron neural network, and support vector machines were developed and compared with modified learner model of random forest. The results implied that individual model response was enriched by utilizing bagging and boosting learners. A random forest with a modified learner algorithm provided the robust performance of the models with coefficient correlation of 0.932 for compressive strength and 0.86 for split tensile strength with the least errors. Sensitivity analyses showed that tensile strength models were least sensitive to water and coarse aggregates, while cement, silica fume, coarse aggregate, and age have a substantial effect on compressive strength models. To minimize overfitting errors and corroborate the generalized modelling result, a cross-validation K-Fold technique was used. Machine learning algorithms are used to predict mechanical properties of plastic concrete to promote sustainability in construction industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
faiting完成签到,获得积分10
刚刚
勤奋的天亦完成签到,获得积分10
刚刚
kiyo_v完成签到,获得积分10
刚刚
邓代容发布了新的文献求助10
1秒前
无私的芹应助yuelsy0117采纳,获得10
1秒前
ZHYChen完成签到,获得积分10
1秒前
huk发布了新的文献求助10
1秒前
ZJJ静完成签到,获得积分10
2秒前
董竹君完成签到,获得积分10
2秒前
俭朴的天曼完成签到,获得积分10
2秒前
Lucas应助顺心的翠丝采纳,获得10
3秒前
李田田完成签到,获得积分20
3秒前
3秒前
义气乐儿发布了新的文献求助10
3秒前
宅心仁厚完成签到 ,获得积分10
4秒前
4秒前
骑猪看日落完成签到,获得积分10
4秒前
冥冥之极为昭昭完成签到,获得积分10
4秒前
繁荣的又夏完成签到,获得积分10
5秒前
5秒前
嗝嗝完成签到,获得积分10
5秒前
6秒前
Windsyang完成签到,获得积分10
6秒前
cs完成签到,获得积分10
7秒前
wanci应助小蜜蜂采纳,获得10
7秒前
拉瓦锡不爱化学完成签到,获得积分10
8秒前
三笠完成签到,获得积分10
9秒前
cmuwinni完成签到,获得积分10
9秒前
爆米花应助ddffgz采纳,获得30
10秒前
在水一方应助YY采纳,获得10
10秒前
实验耗材发布了新的文献求助10
10秒前
孤独听雨的猫完成签到 ,获得积分10
10秒前
Andy.发布了新的文献求助10
10秒前
李大侠完成签到,获得积分10
10秒前
陌路完成签到,获得积分10
11秒前
11秒前
11秒前
南亭完成签到,获得积分10
12秒前
Akim应助MAOJCFK采纳,获得10
13秒前
朱朱朱完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027