Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF

极限抗拉强度 抗压强度 人工神经网络 Boosting(机器学习) 机器学习 随机森林 多层感知器 支持向量机 计算机科学 人工智能 材料科学 复合材料
作者
Afnan Nafees,Sherbaz Khan,Muhammad Faisal Javed,Raid Alrowais,Abdeliazim Mustafa Mohamed,Abdullah Mohamed,Nikolai Vatin
出处
期刊:Polymers [MDPI AG]
卷期号:14 (8): 1583-1583 被引量:74
标识
DOI:10.3390/polym14081583
摘要

Increased population necessitates an expansion of infrastructure and urbanization, resulting in growth in the construction industry. A rise in population also results in an increased plastic waste, globally. Recycling plastic waste is a global concern. Utilization of plastic waste in concrete can be an optimal solution from recycling perspective in construction industry. As environmental issues continue to grow, the development of predictive machine learning models is critical. Thus, this study aims to create modelling tools for estimating the compressive and tensile strengths of plastic concrete. For predicting the strength of concrete produced with plastic waste, this research integrates machine learning algorithms (individual and ensemble techniques), including bagging and adaptive boosting by including weak learners. For predicting the mechanical properties, 80 cylinders for compressive strength and 80 cylinders for split tensile strength were casted and tested with varying percentages of irradiated plastic waste, either as of cement or fine aggregate replacement. In addition, a thorough and reliable database, including 320 compressive strength tests and 320 split tensile strength tests, was generated from existing literature. Individual, bagging and adaptive boosting models of decision tree, multilayer perceptron neural network, and support vector machines were developed and compared with modified learner model of random forest. The results implied that individual model response was enriched by utilizing bagging and boosting learners. A random forest with a modified learner algorithm provided the robust performance of the models with coefficient correlation of 0.932 for compressive strength and 0.86 for split tensile strength with the least errors. Sensitivity analyses showed that tensile strength models were least sensitive to water and coarse aggregates, while cement, silica fume, coarse aggregate, and age have a substantial effect on compressive strength models. To minimize overfitting errors and corroborate the generalized modelling result, a cross-validation K-Fold technique was used. Machine learning algorithms are used to predict mechanical properties of plastic concrete to promote sustainability in construction industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
刚刚
Hello应助科研通管家采纳,获得10
刚刚
赤侯发布了新的文献求助10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
险胜应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
SciGPT应助科研通管家采纳,获得10
1秒前
huo应助科研通管家采纳,获得10
1秒前
固的曼完成签到,获得积分10
1秒前
LHX完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
小红勇闯科研界完成签到,获得积分10
2秒前
hanyang965发布了新的文献求助10
3秒前
kklkimo完成签到,获得积分10
4秒前
6秒前
天天快乐应助huqing采纳,获得10
6秒前
慕青应助黄耀采纳,获得10
6秒前
LI_YX发布了新的文献求助10
7秒前
激动的凡桃完成签到,获得积分10
8秒前
maox1aoxin应助Zhuzhu采纳,获得200
8秒前
能能姓徐完成签到,获得积分20
8秒前
小二郎应助dlfg采纳,获得10
8秒前
泥花发布了新的文献求助10
9秒前
闪闪龙猫应助Bobos采纳,获得10
11秒前
13秒前
传奇3应助心灵美的香旋采纳,获得10
15秒前
16秒前
潇洒又夏完成签到,获得积分20
17秒前
科研通AI2S应助默默怀绿采纳,获得10
18秒前
18秒前
19秒前
王美祥发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310273
求助须知:如何正确求助?哪些是违规求助? 2943254
关于积分的说明 8513427
捐赠科研通 2618482
什么是DOI,文献DOI怎么找? 1431111
科研通“疑难数据库(出版商)”最低求助积分说明 664374
邀请新用户注册赠送积分活动 649557