Data association in multiple object tracking: A survey of recent techniques

计算机科学 概括性 稳健性(进化) 数据关联 人工智能 概率逻辑 机器学习 视频跟踪 联想(心理学) 数据挖掘 任务(项目管理) 相似性(几何) 眼动 对象(语法) 图像(数学) 心理学 心理治疗师 管理 化学 经济 哲学 认识论 基因 生物化学
作者
Lionel Rakai,Huansheng Song,Shijie Sun,Wentao Zhang,Yanni Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:192: 116300-116300 被引量:51
标识
DOI:10.1016/j.eswa.2021.116300
摘要

The advances of Visual object tracking tasks in computer vision have enabled a growing value in its application to video surveillance, particularly in a traffic scenario. In recent years, significant attention has been made for the improvement of multiple object tracking frameworks to be effective in real-time while maintaining accuracy and generality. By breaking down the tasks involved in a Multiple Object Tracking framework based on the Tracking-By-Detection approach — an extension of simply detecting and identifying objects, further involved solving a filtering problem by defining a similarity function to associate objects. Hence, this paper focuses on the task of data association via uniquely defined similarity functions and filters only where we review current literature about these techniques which have been used to advance the performance in MOT for vehicle and pedestrian scenarios. While there is difficulty in classifying the quantitative results for the association task only within a proposed MOT framework, our study tries to outline the fundamental ideas put forward by researchers and compare results in a theoretically qualitative approach. Tracking methods are reviewed by categories based on legacy techniques like Probabilistic and Hierarchical methods, followed by an analysis of new approaches and hybrid models. The models identified in each category are further analysed based on performance in stability, accuracy, robustness, speed and computational complexity to derive an understanding of which direction the research within the data association level is strong and which is lacking. Our review further aims to identify the successful models applied to recognize the weaknesses for future improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助求助采纳,获得10
刚刚
刚刚
顾矜应助yjz采纳,获得10
刚刚
wangchao1880发布了新的文献求助10
1秒前
忍冬完成签到,获得积分10
1秒前
1秒前
友好靖巧发布了新的文献求助10
1秒前
xlk2222发布了新的文献求助10
2秒前
北阳发布了新的文献求助10
3秒前
3秒前
3秒前
yanzinie发布了新的文献求助10
3秒前
3秒前
3秒前
今后应助123采纳,获得10
3秒前
tusyuki发布了新的文献求助10
3秒前
4秒前
舒心的幻莲完成签到,获得积分10
4秒前
烂漫的猕猴桃完成签到,获得积分10
4秒前
忍冬发布了新的文献求助10
4秒前
SciGPT应助盛清让采纳,获得10
4秒前
4秒前
5秒前
赘婿应助ssss采纳,获得10
5秒前
直率安双完成签到,获得积分10
6秒前
xdmhv完成签到 ,获得积分10
6秒前
杨金光完成签到,获得积分10
7秒前
7秒前
传奇3应助Gav采纳,获得10
7秒前
舒适的萃发布了新的文献求助20
7秒前
十米发布了新的文献求助10
7秒前
8秒前
桐桐应助有你采纳,获得10
8秒前
8秒前
江月年发布了新的文献求助10
8秒前
11关注了科研通微信公众号
9秒前
直率安双发布了新的文献求助10
9秒前
10秒前
10秒前
tusyuki完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543260
求助须知:如何正确求助?哪些是违规求助? 3120651
关于积分的说明 9343550
捐赠科研通 2818657
什么是DOI,文献DOI怎么找? 1549757
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713078