毒性
体内
细胞毒性
发育毒性
化学
体外
遗传毒性
EC50型
急性毒性
生物
药理学
生物化学
生物技术
怀孕
有机化学
遗传学
妊娠期
作者
Yun Wu,Wenzhe Wei,Jiayi Luo,Yang Pan,Mengting Yang,Ming Hua,Wenhai Chu,Chendong Shuang,Aimin Li
标识
DOI:10.1021/acs.est.1c03292
摘要
In recent years, dozens of halogenated disinfection byproducts (DBPs) with cyclic structures were identified and detected in drinking water globally. Previous in vivo toxicity studies have shown that a few new cyclic DBPs possessed higher developmental toxicity and growth inhibition rate than common aliphatic DBPs; however, in vitro toxicity studies have proved that the latter exhibited higher cytotoxicity and genotoxicity than the former. Thus, to provide a more comprehensive toxicity comparison of DBPs from different endpoints, 11 groups of cyclic DBPs and nine groups of aliphatic DBPs were evaluated for their comparative in vitro and in vivo toxicity using human hepatoma cells (Hep G2) and zebrafish embryos. Notably, results showed that the in vitro Hep G2 cytotoxicity index of the aliphatic DBPs was nearly eight times higher than that of the cyclic DBPs, whereas the in vivo zebrafish embryo developmental/acute toxicity indexes of the cyclic DBPs were roughly 48-50 times higher than those of the aliphatic DBPs, indicating that the toxicity rank order differed when different endpoints were applied. For a broader comparison, a Pearson correlation analysis of DBP toxicity data from nine different endpoints was conducted. It was found that the observed Hep G2 cytotoxicity and zebrafish embryo developmental/acute toxicity in this study were highly correlated with the previously reported in vitro CHO cytotoxicity and in vivo toxicity in aquatic organisms (P < 0.01), respectively. However, the observed in vitro toxicity had no correlation with the in vivo toxicity (P > 0.05), suggesting that the toxicity rank orders obtained from in vitro and in vivo bioassays had large discrepancies. According to the observed toxicity data in this study and the candidate descriptors, two quantitative structure-activity relationship (QSAR) models were established, which help to further interpret the toxicity mechanisms of DBPs from different endpoints.
科研通智能强力驱动
Strongly Powered by AbleSci AI