卤化物
钙钛矿(结构)
纳米尺度
退火(玻璃)
材料科学
四方晶系
光伏系统
降级(电信)
热稳定性
光伏
太阳能电池
化学工程
纳米技术
化学物理
相(物质)
无机化学
化学
光电子学
冶金
计算机科学
生态学
工程类
有机化学
生物
电信
作者
Laura E. Mundt,Fei Zhang,Axel F. Palmstrom,Junwei Xu,Robert Tirawat,Leah L. Kelly,Kevin H. Stone,Kai Zhu,Joseph J. Berry,Michael F. Toney,Laura T. Schelhas
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2021-12-29
卷期号:7 (1): 471-480
被引量:27
标识
DOI:10.1021/acsenergylett.1c02338
摘要
The structural stability of the metal halide perovskite (MHP) absorber material is crucial for the long-term solar cell stability in this thin-film photovoltaic technology. Here, we use mixed A-site FA0.83Cs0.17PbI3 to demonstrate that nanoscale compositional heterogeneity can serve as initiation sites for more macroscale, irreversible phase segregation, which causes device performance degradation. Probing compositional heterogeneity on length scales that has not been detected with conventional characterization techniques, we analyze the tetragonal to cubic phase transition behavior to indirectly determine the level of nanoscale compositional heterogeneity in the initial films. Further, we show that the thermal annealing conditions of the MHP layer during film processing influence the initial nanoscale compositional heterogeneity, and changing these processing conditions can be used to improve the device performance stability. The insights into structural degradation mechanisms initiated by nanoscale compositional heterogeneity and the proposed mitigation strategies will help guide the way toward long-term stable MHP solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI